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Welcome 
 

Dear Participant:  

Welcome to the First International Workshop on Adversarial Information Retrieval on 

the Web (AIRWeb). This workshop is intended to bring together researchers and 

practitioners that are concerned with the on-going efforts in adversarial information 

retrieval on the Web. We have a total of eight peer-reviewed papers to be presented -- 

five research presentations and three synopses of work in progress. All convey the latest 

results in adversarial web IR, and address topics such as web spam, blog spam, cloaking, 

redirection, link optimization for PageRank, automated link spam detection, link bombs, 

reverse engineering of ranking algorithms, and propaganda. In addition, we will have a 

panel session in which workshop participants may raise additional questions of interest to 

industry experts and researchers.  

I extend my thanks to the authors and presenters, and to the members of the program 

committee for their work in contributing to the material that forms an outstanding first 

workshop. I also sincerely thank Ask Jeeves for their support of the workshop, enabling 

us to partially cover travel costs for many of the student presenters. It is my hope that you 

will find the work presented interesting enough that you will ask questions, contribute 

ideas, and perhaps get involved in future work in this area.  

  

Brian D. Davison, Program Chair 

Lehigh University, Bethlehem, PA 

19 April 2005 
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Overview 
 

Search is the single most common application used on the Web. The attraction of hundreds of 

millions of searches per day provides significant incentive to content providers to do whatever 

necessary to rank highly in search engine results. The use of techniques that push rankings higher 

than they belong is often called spamming a search engine (or spamdexing). Such methods 

typically include textual as well as link-based techniques. Like e-mail spam, search engine spam 

is a form of adversarial information retrieval; the conflicting goals of accurate results of search 

providers and high positioning by content providers provides an interesting and real-world 

environment to study techniques in optimization, obfuscation, and reverse engineering, in 

addition to the application of information retrieval and classification.  

The AIRWeb'05 workshop solicited technical papers on any aspect of adversarial information 

retrieval on the Web. Particular areas of interest included, but were not limited to:  

• search engine spam and optimization,  

• crawling the web without detection,  

• link-bombing,  

• reverse engineering of ranking algorithms,  

• advertisement blocking, and  

• web content filtering.  

Papers addressing higher-level concerns (e.g., whether 'open' algorithms can succeed in an 

adversarial environment, whether permanent solutions are possible, etc.) were also welcome.  

Authors were invited to submit papers and synopses in PDF format. We encouraged 

submissions presenting novel ideas and work in progress, as well as more mature work. 

Submissions were judged by multiple experts on relevance, significance, originality, clarity, and 

technical merit.  
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ABSTRACT
We present an approach for detecting link spam common in
blog comments by comparing the language models used in
the blog post, the comment, and pages linked by the com-
ments. In contrast to other link spam filtering approaches,
our method requires no training, no hard-coded rule sets,
and no knowledge of complete-web connectivity. Prelimi-
nary experiments with identification of typical blog spam
show promising results.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - search engine spam; I.7.5 [Docu-
ment Capture]: Document analysis - document classifi-
cation, spam filtering; K.4.1 [Computers and Society]:
Public Policy Issues - abuse and crime involving computers,
privacy

General Terms
Algorithms, Languages, Legal Aspects

Keywords
Comment spam, language models, blogs

1. INTRODUCTION
The growing popularity of internet search as a primary

access point to the web has increased the benefits of achiev-
ing top rankings from popular search engines, especially for
commercially-oriented web pages. Combined with the suc-
cess of link analysis methods such as PageRank, this led to
a rapid growth in link spamming – creating links which are
“present for reasons other than merit” [6]. A well-known
example of link spamming is link farms – link exchange pro-
grams existing for the sole purpose of boosting the link-
based prestige of participating sites; these farms are fairly
easily identified by topological analysis. However, in recent
years search engines are facing a new link spam problem
which is harder to track down: comment spam.

Comment spam is essentially link spam originating from
comments and responses added to web pages which support
dynamic user editing. With the massive increase in the num-
ber of blogs in recent years, such pages have proliferated;
additional editable web pages which are often the target of

Copyright is held by the author/owner(s).
AIRWeb’05, May 10, 2005, Chiba, Japan.

comment spammers are wikis 1 and guestbooks. Blogs have
made the life of comment spammers easy: instead of setting
up complex webs of pages linking to the spam page, the
spammer writes a simple agent that visits random blog and
wiki pages, posting comments that link back to her page.
Not only is spamming easier, but the spammer also bene-
fits from the relatively high prestige that many blogs enjoy,
stemming both from the rapid content change in them and
the density of links between them. Comment spam, and link
spam in general, poses a major challenge to search engines
as it severely threatens the quality of their ranking. Com-
mercial engines are seeking new solutions to this problem [9];
accordingly, the amount of research concerning link spam is
increasing [8, 2, 6].

In this paper, we follow a language modeling approach
for detecting link spam in blogs and similar pages. Our
intuition is simple: we examine the use of language in the
blog post, a related comment, and the page linked from the
comment. In the case of comment spam, these language
models are likely to be substantially different: the spammer
is usually trying to create links between sites that have no
semantic relation, e.g., a personal blog and an adult site. We
exploit this divergence in the language models to effectively
classify comments as spam or non-spam. Our method can
be deployed in two modes: in retrospective manner, when
inspecting a blog page which already has comments (this is
particularly useful for crawlers); or in an online manner, to
be used by the blog software to block spammers on the fly.

The rest of the paper is organized as follows. In Sec-
tion 2 we survey existing work in the area of link spam.
Our language modeling approach is presented and formal-
ized in Section 3. Section 4 follows with a description of
preliminary experiments conducted using this method; we
conclude in Section 5. This paper discusses ongoing work
and is meant to provide the conceptual framework and ini-
tial results, rather than a complete analysis of our proposed
solution.

2. RELATED WORK

2.1 Comment Spam
Most approaches to preventing comment spam are tech-

nical in nature, and include:

• Requiring registration from comment posters;

1Collaborative websites whose content can be edited such as
Wikipedia – http://wikipedia.org
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• Requiring commenters to solve a captcha – a simple
Turing test mechanism [17];

• Preventing HTML in comments;

• Preventing comments on old blog posts;

• Using lists of forbidden or allowed IP addresses for
commenters (“blacklists” and “whitelists”);

• Using internal redirects instead of external links in
comments;

• Limiting the number (or rate) of comments being added
(“throttling”).

While some of these mechanisms can be quite effective,
they also have disadvantages. Methods which require user
effort such as registration reduce the number of spontaneous
responses which are important to many blog maintainers.
Additionally, they do not affect the millions of commented
web pages already “out there”, and only address new com-
ments. Preventing commenting altogether, or limiting it to
plain text, or enforcing redirects on links in it, limits also
legitimate comments and links contained in them, reducing
the effectiveness of link analysis methods. Blacklists and
whitelists require constant maintenance, and are bypassed
by spammers using proxies and spoofed legitimate IP ad-
dresses. Throttling can reduce the amount of spam from a
single page, but not the phenomenon altogether; spammers
will simply post to more blogs.

Recently, a number of major search engines such as Ya-
hoo, MSN Search and Google announced that they are col-
laborating with blogging software vendors and hosts to fight
comment spam using a special attribute added to hypertext
links [13]. This tag, rel="nofollow", tells search engines
that the links are untrusted, and will effectively prevent ap-
plication of link-analysis scores to links associated with it –
maybe even prevent crawling them altogether. However, the
usage of this attribute is problematic for a number of rea-
sons, including harming the inter-linked nature of blogs and
possible abuse by webmasters; indeed, it is disputed within
the blogging community [14, 4], and many do not intend to
use it (e.g., at the time of writing, Yahoo’s own search blog
– which announced the tag – does not implement it).

2.2 Content Filtering and Spam
A different set of approaches for fighting comment spam

works by analyzing the content of the spam comment, and
possibly also the contents of pages linked by the comment
(e.g., [12]). All these techniques are currently based on de-
tecting a set of keywords or regular expressions within the
comments. This approach suffers from the usual drawbacks
associated with a manual set of rules, i.e. high maintenance
load as spammers are getting more sophisticated. Typically,
content-based methods require training with a large amount
of spam and non-spam text, and correcting mistakes that
are made; failure to continuously maintain the learner will
decrease its accuracy, as it will create an inaccurate concep-
tion of what’s spam and what’s not. Having said that, regu-
lar expression based methods are fairly successful currently,
partly due to the relatively young history of link spamming.
It is expected that, similarly to the email spam world, as
comment spammers enhance their methods, rule-based ap-
proaches will become less effective.

Published work on spam refers mostly to email spam,
which was popular long before comment spam was, and was

therefore targeted from many industrial and academic an-
gles. In the email domain, machine learning and language
modeling approaches have been very effective in classifying
spam [10, 3]. An important difference between email spam
and comment spam stems from the fact that comment spam
is not intended for humans. No comment spammer actually
expects anyone to click on the link that was added: this
link is meant solely for the purpose of being followed by web
crawlers. Thus, the spammer can (and does) use any type of
words/features in his comment: the main goal is to have the
link taken into account by search engine ranking schemes,
and strings which have been reported as good discriminators
of email spam such as over-emphasized punctuation [16] are
not necessarily typical of comment spam.

2.3 Identifying Spam Sites
An altogether different approach to spam filtering is not

to classify individual links as spam links or legitimate links,
but to classify pages or sites as spam; recent work in this
area includes usage of various non-content features [8] and
link analysis methods [2]. The drawback of these approaches
is that spam is essentially not a feature of pages, but of links
between pages; sites can have both legitimate and spam in-
coming links (this is true for many online shops). Addition-
ally, usage of some of these methods requires full connectiv-
ity knowledge of the domain, which is beyond the abilities
of most bloggers.

In comparison to the existing methods presented, our ap-
proach requires no training, no maintenance, and no knowl-
edge of additional information except that present on the
commented web page.

3. COMMENT SPAM AND LANGUAGE
MODELS

In this section we outline our language model based ap-
proach to identifying comment spam.

In the previous section, we noted that email spam is easier
to classify than comment spam since it tends to have charac-
terizing features – features which are supposed to convince
a human to respond to the spam mail. On the other hand,
comment spam has an advantage (from the filtering per-
spective) that email spam does not have. While every email
needs to be classified as spam in an isolated manner, blog
comments are presented within a context: a concrete seman-
tic model in which the comment was posted. Our main as-
sumption is that spam comments are more likely to violate
this context by presenting completely different issues and
topics. We instantiate the semantic models of the context,
the comment and the page linked by the comment using
language models.

3.1 Language Models for Text Comparison
A language model is a statistical model for text genera-

tion: a probability distribution over strings, indicating the
likelihood of observing these strings in a language. Usually,
the real model of a language is unknown, and is estimated
using a sample of text representative of that language. Dif-
ferent texts can then be compared by estimating models for
each of them, and comparing the models using well-known
methods for comparing probability distributions. Indeed,
the use of language models to compare texts in the Informa-
tion Retrieval setting is empirically successful and becoming

2



increasingly popular [15, 11].
As noted earlier, we identify three types of languages, or

language models, involved in the comment spam problem
(see Figure 1). First, there is the model of the original blog
post. Then, every comment added to the post adds two
more models: the language used in the comment, and the
language used in the page linked by the comment.

Figure 1: Three types of language models: the
model of the blog post, the models of the comments,
and the models of the pages linked by the comments.

To compare the models, we follow a variation on the In-
terpolated Aggregate Smoothing used by Allan et. al. in [1].
In practice, this measure calculates the smoothed Kullback-
Leibler divergence between the language model of a short
fragment of text and a combined language model of knowl-
edge preceding this text. Formally, the KL-divergence be-
tween two probability distributions Θ1, Θ2 is

KL(Θ1‖Θ2) =
∑
w

p(w|Θ1) log
p(w|Θ1)

p(w|Θ2)

where p(w|Θi) is the probability of observing the word w ac-
cording to the model Θi. In Interpolated Aggregate Smooth-
ing, probabilities are estimated using maximum likelihood
models and smoothed with Jelinek-Mercer smoothing. The
two language models we are comparing are any pair of the
triplet (blog post, comment, page linked by commet); let’s
examine the comparison between the model of the blog post
(ΘP ), and the model of a comment to this post (ΘC). We
estimate the probabilities using maximum likelihood and
smooth using a general probability model of words on the
internet obtained from [7]. This gives us:

p(w|ΘP ) = λ1p(w|ΘML(post))
+ (1 − λ1)p(w|ΘML(internet))

p(w|ΘC) = λ2p(w|ΘML(comment))
+ (1 − λ2)p(w|ΘML(internet))

Where ML(〈source〉) are maximum likelihood estimates.
The language models used here are unigram models, but it is
possible to use n-grams of higher orders in the same manner.

3.2 Spam Classification
Once we have a language model for each comment and a

score based on its similarity to the language model of the

blog post, we use these scores to classify the comment as
spam or non-spam. Although this can be done using a sim-
ple threshold, we follow a different approach. We assume
that the spammed blog page is parsed by a crawler, and the
crawler is trying to assess which links (from the comments)
should be used for link analysis methods and which not. In
this case, the crawler views a range of comments, and must
distinguish the good ones from the bad. As a first stage,
the crawler calculates the KL-divergence for all comments
as indicated above. The values obtained can then be seen
as drawn from a probability distribution which is a mixture
of Gaussians: each Gaussian represents a different language
model. The Gaussian with the lowest mean – the least dis-
tance from the language model of the original blog post –
represents the language model which is closest to the origi-
nal post. Subsequent Gaussians represent language models
which have a larger deviation from the original one, and are
therefore more likely to constitute spam comments.

For our model, we assume the KL-divergence scores to
be drawn from a 2-Gaussian distribution: the “legitimate”
language model, and all other (spam) models (see example
of the distribution in one of the blog pages in Figure 2). To
estimate the parameters of the Gaussians, we use the EM
algorithm.

 2  2.5  3  3.5  4  4.5  5  2  2.5  3  3.5  4  4.5  5

Figure 2: Gaussian mixture model estimated from
the KL-divergence values of 10 comments on a blog
post, and its underlying Gaussians

Finally, a comment is classified as spam if its KL-divergence
from the blog post is more likely to be drawn from the spam
Gaussian than from the legitimate one. For this purpose,
we calculate a discriminating value between the two Gaus-
sians – a number for which lower values are more likely to
be drawn from the Gaussian with lower mean, and higher
values are more likely to be drawn from the other Gaus-
sian. Visually, this threshold can be viewed as the best
vertical separator between the two distributions. Note that
this threshold value provides us with an easy mechanism for
changing the likelihood of identifying false positives (“le-
gitimate” comments classified as spam) and false negatives
(unidentified spam). Decreasing the threshold (“moving”
the separator left) will result in a more strict requirement
from the language model divergence between the comment
and the post, effectively increasing the number of false pos-
itives and reducing false negatives; increasing the threshold
value (“moving” the line to the right) will cause our method
to be more tolerant to higher KL-divergence values, reduc-
ing false positives at the cost of increased false negatives.
Usually, the cost of false positives is considered higher than
that of false negatives; in general, we can use a threshold
multiplier value to adjust the original threshold (where a
multiplier of 1.0 will leave the threshold unchanged).

3.3 Model Expansion

3



Blog comments can be very short, and this is true also
for some blog posts. This results in sparse language models,
containing a relatively low number of words. We therefore
propose to enrich the models of both the post and the com-
ment, to achieve a more accurate estimation of the language
model. An intuitive way to do so is to follow links present
in the post and the comment, and add their content to the
post and the comment, respectively; in the case of the post,
it is also possible to follow incoming links to the blog and
add their content. Taking this a step further, it is also possi-
ble to continue following links up to depth N, although this
potentially causes topic (and language model) drift.

3.4 Limitations and Solutions
An easy way for spammers to “cheat” our model (or any

other model which compares the contents of the post and the
comment) is to generate comments with a similar language
model to the original blog post. This makes the link-spam
bots slightly more complicated since they must identify the
post contents and use its model for generating a close one
(e.g., by copying phrases) – but spammers have shown to
overcome much higher obstacles.

However, in this case of language model faking, a new op-
portunity arises: assuming the spammer posts multiple com-
ments in many different blogs (as a means of increasing the
PageRank), there are now many comments with completely
different language models to the same spam site. This is
easily detectable at the search engine level which has a con-
nectivity server at its hand; it can also be detected by an
iterative HITS-like method by the blogger, following the link
to the spam site and then its incoming links.

As any other spam filtering method, ours is not foolproof
and can make mistakes; comments which are formulated
with a sufficiently different vocabulary than the blog post
might be mistaken for spam. However, this is precisely the
reason for the robustness of our approach: it is very hard
for the spammer to create comments that will be both sim-
ilar to the blog language and to the spam site language.
To account for these mistakes, an alternative to using our
method as a binary spam/non-spam classifier is to use it for
assigning a weight to links found in comments according to
their language model divergence; the weight can be used to
decrease PageRank of malicious sites, using methods such
as the one reported in [5].

4. EXPERIMENTAL SETTING
We now present some preliminary experiments in identi-

fying comment spam in blogs using our approach.
We collected 50 random blog posts, along with the 1024

comments posted to them; all pages contain a mix of spam
and non-spam comments. The number of comments per
post ranged between 3 and 96, with the median being 13.5
(duplicate and near-duplicate comments were removed). We
manually classified the comments: 332 (32%) were found to
be “legitimate” comments, some of them containing links to
related pages and some containing no links; the other 692
comments (68%) were link-spam comments 2.

The link-spam comments we encountered in our corpus
are of diverse types; while some of them are simple keyword

2The collection can be obtained from
http://ilps.science.uva.nl/Resources/blogspam/

lists, accompanied by links to the spam sites, others employ
more sophisticated language (see Figure 3 for some sample
comments). A typical blog page from our corpus contains a
mix of different comment spam types.

6708 sports bettingonline sports bettingmarch

madnessbasketball bettingncaa bettingsports ...

Link: gambling site

%syn(Cool|Nice|Rulezz)% %syn(blog,|portal|site)%

hope to make %syn(my own|own weblog|my diary)%,

not worse than yours ;)

Link: adult site

A common mistake that people make when trying

to design something completely foolproof was to

underestimate the ingenuity of complete fools.

Link: pharmacy site

i was looking for plus size lingerie but google

sent me here

Link: fashion shop

Figure 3: Samples of comment spam in our collec-
tion (top to bottom): [1] keyword based, with a
random number to prevent duplicate detection; [2]
revealing internal implementation of the spamming
agent; [3] using quotes – in this case, from Dou-
glas Adams – as “trusted” language; [4] disguising
as random surfer

In this set of experiments, we compared only the language
models of the post and the comments, and did not take into
account the model of the page linked by the comments. This
was done due to time constraints. The values of λi (see
previous section) were both set to 0.9.

4.1 Results
The results of our experiments are shown in Table 1. False

negatives are spam comments which were not identified as
spam by our method, while false positives are non-spam
comments which were classified as spam. The threshold mul-
tiplier is the value used to modify the separator between the
two language models as described in section 3.2.

As a naive baseline, we use the maximum likelihood prob-
abilities for the comment type in our model; as noted earlier,
68% of the comments were spam, so we assume an ad-hoc
fixed probability of 0.68 for a comment to contain link spam.
We achieve reasonable performance with our model, and can
clearly see the trade-off between misclassifying spam and
misclassifying non-spam, resulting from different modifica-
tions to the language model threshold.

Discussion.The size of our corpus is far from being satis-
factory: we therefore label our results as a proof-of-concept
and basis for continued experimentation, rather than full-
fledged evidence of the method’s capabilities. Nevertheless,
the results are encouraging and clearly show that our in-
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Table 1: Blog link-spam classification results
Threshold False False

Method Multiplier Correct Negatives Positives

Baseline (avg. 100 runs) N/A 581 (57%) 223 (21.5%) 220 (21.5%)
KL-divergence 0.75 840 (82%) 65 (6.5%) 119 (11.5%)
KL-divergence 0.90 834 (81.5%) 69 (6.5%) 121 (12%)
KL-divergence 1.00 823 (80.5%) 88 (8.5%) 113 (11%)
KL-divergence 1.10 850 (83%) 87 (8.5%) 87 (8.5%)
KL-divergence 1.25 835 (81.5%) 111 (11%) 78 (7.5%)

tuition is correct: the language used in spam comments
does diverge from the language of the blog post substan-
tially more than the language used in legitimate comments.

An analysis of the misclassified comments reveals that
many of them are very short – containing 3-4 words, usu-
ally a non-content response to the post (e.g., “That sounds
cool”). However, the vast majority of these comments con-
tain no external links, or an email link only – so their mis-
classification will not result in actual search engine spam (in
the case of false negatives) and not change the “true” link-
analysis prestige of pages (in the case of false positives).
While it is possible to integrate language divergence with
comment length and other features into a hybrid comment
spam classification system, we focused on the language as-
pect only and did not explore usage of additional knowledge.

Model Expansions.As mentioned earlier, a possible solu-
tion to the sparseness of some of the blog posts is to expand
the language model in various ways. We performed a lim-
ited amount of experiments involving such expansions, by
following all links present in the blog post and adding the
content present in the target pages to the content of the blog
post, before estimating the language model. Of the 50 blog
posts in our corpus, 31 posts had valid links to other pages
(some posts did not contain links at all, and some contained
expired and broken links). The average number of links
followed (for the 31 pages with expansions) was 3.4. Un-
fortunately, using the expanded models did not improve the
overall classification accuracy. In fact, while for some blog
posts – most notably shorter ones – the expansion helped
substantially, we experienced a degradation of 2%-5% in the
average performance over the entire corpus. However, both
the fairly small number of pages which were expanded and
the limited experiments performed prevent us from formu-
lating a definite statement regarding model expansion at this
stage.

5. CONCLUSIONS
We presented an approach for classifying blog comment

spam by exploiting the difference between the language used
in a blog post and the language used in the comments to
that post (and pages linked from those comments). Our
method works by estimating language models for each of
these components, and comparing these models using well-
known methods. Preliminary experiments using our method
to classify typical comment spam show promising results;
while in this paper we discuss blogs, the problem and the
solution are relevant to other types of comment spam, such
as wiki spam.
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Abstract

Cloaking and redirection are two possible search en-
gine spamming techniques. In order to understand
cloaking and redirection on the Web, we downloaded
two sets of Web pages while mimicking a popular Web
crawler and as a common Web browser. We estimate
that 3% of the first data set and 9% of the second
data set utilize cloaking of some kind. By checking
manually a sample of the cloaking pages from the sec-
ond data set, nearly one third of them appear to aim
to manipulate search engine ranking.

We also examined redirection methods present in
the first data set. We propose a method of detecting
cloaking pages by calculating the difference of three
copies of the same page. We examine the different
types of cloaking that are found and the distribution
of different types of redirection.

1 Introduction

Cloaking is the practice of sending different content to
a search engine than to regular visitors of a web site.
Redirection is used to send users automatically to
another URL after loading the current URL. Both of
these techniques can be used in search engine spam-
ming [13, 7]. Henzinger et al. [8] has pointed out that
search engine spam is one of the major challenges
of web search engines and cloaking is among the
spamming techniques used today. Since search en-
gine results can be severely affected by spam, search
engines typically have policies against cloaking and
some kinds of dedicated redirection [5, 16, 1].

Google [5] describes cloaking as the situation in
which “the webserver is programmed to return dif-
ferent content to Google than it returns to regular

Copyright is held by the author/owner(s).
AIRWeb’05, May 10, 2005, Chiba, Japan.

users, usually in an attempt to distort search engine
rankings.” An obvious solution to detect cloaking is
that for each page, calculate whether there is a differ-
ence between a copy from a search engine’s perspec-
tive and a copy from a web browser’s perspective.
But in reality, this is non-trivial. Unfortunately, it
is not enough to know that corresponding copies of
a page differ; we still cannot tell whether the page
is a cloaking page. The reason is that web pages
may be updated frequently, such as in a news web-
site or a blog website, or simply that the web site
puts a time stamp on every page it serves. Even if
two crawlers were synchronized to visit the same web
page at nearly the same moment, some dynamically
generated pages may still have different content, such
as a banner advertisement that is rotated on each ac-
cess.

Besides the difficulty of identifying cloaking, it is
also hard to tell whether a particular instance of
cloaking is considered acceptable or not. We de-
fine the cloaking behavior that has the effect of ma-
nipulating search engine ranking results as semantic
cloaking. Unfortunately, the various search engines
may have different criteria for defining unacceptable
cloaking. As a result, we have focused on the simpler,
more basic task — when we mention cloaking in this
paper, we usually refer to the simpler case of whether
different content is served to automated crawlers ver-
sus web browsers, but not different content to every
visitor. We name this cloaking as syntactic cloak-
ing. So, for example, we will not consider dynamic
advertisements to be cloaking.

In order to investigate this issue, we collected two
data sets: one is a large data set containing 250,000
pages and the other is a smaller data set containing
47,170 pages. The detail of these two data set will be
given in Section 3. We manually examined a number
of samples of those pages and found several differ-
ent kinds of cloaking techniques. From this study we
make an initial proposition toward building an auto-

1
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mated cloaking detection system. Our hope is that
these results may be of use to researchers to design
better and more thorough solutions to the cloaking
problem.

Since redirection can also be used as a spamming
technique, we also calculated some statistics based on
our crawled data for cloaking. Four types of redirec-
tion are studied.

Few publications address the issue of cloaking on
the Web. As a result, the main contribution of this
paper is to begin a discussion of the problem of cloak-
ing and its prevalence in the web today. We pro-
vide a view of actual cloaking and redirection tech-
niques. We additionally propose a method for detect-
ing cloaking by using three copies of the same page.

We next review those few papers that mention
cloaking. The data sets we use for this study are
introduced in Section 3. The results of cloaking and
redirection are shown in Section 4 and 5 respectively.
We conclude this paper with a summary and discus-
sion in Section 6.

2 Related Work

Henzinger et al. [8] mentioned that search engine
spam is quite prevalent and search engine results
would suffer greatly without taking measures. They
also mentioned that cloaking is one of the major
search engine spam techniques.

Gyöngyi and Garcia-Molina [7] describe cloaking
and redirection as spam hiding techniques. They
showed that web sites can identify search engine
crawlers by their network IP address or user-agent
names. They also described the use of refresh meta
tags and JavaScript to perform redirection. They ad-
ditionally mention that some cloaking (such as send-
ing search engine a version free of navigational links,
advertisements but no change to the content) are ac-
cepted by search engines.

Perkins [13] argues that agent-based cloaking is
spam. No matter what kind of content is sent to
search engine, the goal is to manipulate search en-
gines rankings, which is an obvious characteristic of
search engine spam.

Cafarella and Cutting [4] mention cloaking as
one of the spamming techniques. They said that
search engines will fight cloaking by penalizing sites
that give substantially different content to different
browsers.

None of the above papers discuss how to detect
cloaking, which is one aspect of the present work. In

one cloaking forum [14], many examples of cloaking
and methods of detecting cloaking are proposed and
discussed. Unfortunately, generally these discussions
can be taken as speculation only, as they lack strong
evidence or conclusive experiments.

Najork filed for patent [12] on a method for detect-
ing cloaked pages. He proposed an idea of detect-
ing cloaked pages from users’ browsers by installing a
toolbar and letting the toolbar send the signature of
user perceived pages to search engines. His method
does not distinguish rapidly changing or dynamically
generated Web pages from real cloaking pages, which
is a major concern for our algorithms.

3 Data set

Two data sets were examined for our cloaking and
redirection testing. For convenience, we name the
first data as HITSdata and the second as HOTdata.

3.1 First data set: HITSdata

In related work to recognize spam in the form
of link farms [15], we collected Web pages in the
neighborhood of the top 100 results for 412 queries
by following the HITS data collection process [9].
That is, for each query presented to a popular search
engine, we collected the top 200 result references,
and for each URL we also retrieved the outgoing
link set, and up to 100 incoming link pages. The
resulting data set contains 2.1M unique Web pages.
From these 2.1M URLs, we randomly selected
250,000 URLs. In order to test for cloaking, we
crawled these pages simultaneously from a univer-
sity IP address (Lehigh) and from a commercial
IP address (Verizon DSL). We set the user-agent

from the university address to be Mozilla/4.0

(compatible; MSIE 5.5; Windows 98) and the
one from the commercial IP to be Googlebot/2.1

(+http://www.googlebot.com/bot.html). From
each location we crawled our dataset twice with
a time interval of one day. So, for each page, we
finally have four copies, two of which are from a
web browser’s perspective and two from a crawler’s
perspective. For convenience, we name these four
copies as B1, B2, C1 and C2 respectively. For each
page, the time order of retrieval of these four copies
is always C1, B1, C2 and B2.

2
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3.2 Second data set: HOTdata

We also want to know the cloaking ratio within the
top response lists for hot queries.

The first step is to collect hot queries from popular
search engines. To do this, we collected 10 popular
queries of Jan 2005 from Google Zeigeist [6], top 100
search terms of 2004 from Lycos [10], top 10 searches
for the week ending Mar 11, 2005 from Ask Jeeves [3],
and 10 hot searches in each of 16 categories ending
Mar 11, 2005 from AOL [2]. This resulted in 257
unique queries from these web sites.

The second step is to collect top response list for
these hot queries. For each of these 257 queries, we re-
trieved the top 200 responses from the Google search
engine. The number of unique URLs is 47,170. Like
the first data set, we downloaded four copies for each
of these 47,170 URLs, two from a browser’s perspec-
tive and two from a crawler’s perspective. But all
these copies are downloaded from machines with a
university IP address. For convenience, we name
these four copies HC1, HB1, HC2 and HB2 re-
spectively. This order also matches the time order
of downloading them.

4 Results of Cloaking

In this section, we will show the results for the cloak-
ing test.

4.1 Detecting Cloaking in HITSdata

Intuitively, the goal of cloaking is to give differ-
ent content to a search engine than to normal web
browsers. This can be different text or links. We
use two techniques to compare versions retrieved by
a crawler and a browser — we consider the number
of differences in the terms and links used over time
to detect cloaking.

As we mentioned earlier in Section 1, calculat-
ing the difference between pages from the browser’s
and crawler’s viewpoints is not strong enough to
tell whether the page does cloaking. Our proposed
method is that we can use three copies of a page C1,
C2 and B1 to decide if it is a cloaking page. The
detail is that for each URL, we first calculate the dif-
ference between C1 and C2 (for convenience, we use
NCC to represent this number). Then we calculated
the difference between B1 and C1 (for convenience,
we use NBC to represent this number). Finally if
NBC is greater than NCC, then we mark it as a
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Figure 1: Distribution of the difference of NCC and
NBC.

cloaking candidate. The intuition is that the page
may change frequently, but if the difference between
the browser’s copy and the crawler’s copy is bigger
than the difference between two crawler copies, the
evidence may be enough that the page is cloaking.

We used two methods to calculate the difference
between pages — the difference in terms used, and
the difference in links provided. We describe each
below, along with the results obtained.

4.1.1 Term Difference

The first method for detecting cloaking is to use term
difference among different copies. Instead of using all
the terms in the HTML files, we used the “bag of
words” method for analyzing the web pages, i.e., we
parse the HTML file into terms and only count each
unique term once no matter how many times this
term appears. Thus, each page is marked by a set of
words after parsing.

For each page, we first calculated the number of
different terms between the copies C1 and C2 (desig-
nated NCC, as described above). We then calculated
the number of different terms between the copies C1
and B1, (designated NBC). We then select pages
that have a bigger NBC than NCC as candidates of
cloaking. For this data set, we marked 23,475 candi-
dates of the original 250K data set.

The distribution of the difference of these 23,475
pages forms a power-law-like distribution, shown in
Figure 1.

To check what threshold for this difference between
NCC and NBC is a good indication for real cloaking,
first, we put the 23,475 URLs into ten different buck-
ets based on the difference value. The range for each
bucket and the number of pages within each bucket
are shown in Table 1.

Then, from each bucket we randomly selected

3
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Bucket ID RANGE No. of Pages

1 x <= 5 8084
2 5 < x <= 10 2287
3 10 < x <= 20 1938
4 20 < x <= 40 2065
5 40 < x <= 80 2908
6 80 < x <= 160 1731
7 160 < x <= 320 1496
8 320 < x <= 640 912
9 640 < x <= 1280 1297

10 1280 < x 757

Table 1: Buckets of term difference

Figure 2: The ratio of syntactic cloaking in each
bucket based on term difference.

thirty pages and checked them manually to see how
many from these thirty pages are real syntactic cloak-
ing pages within each bucket. The result is shown in
Figure 2.

The trend is obvious in Figure 2. The greater the
difference, the higher proportion of cloaking that is
contained in the bucket. In order to know which is
the optimal threshold to choose, we calculated the
precision, recall and F-measure based on the range
of these buckets. For these three measures, we fol-
low the definitions in [11] and select α to be 0.5 in
the F-measure formula to give equal weight to recall
and precision. Precision is the proportion of selected
items that the system got right; Recall is the propor-
tion of the target items that the system selected; F-
measure is the measure that combines precision and
recall. The results of these three measures are shown
in Table 2. If we choose F-measure as the criteria,
buckets 4 and 5 have the highest value. Since the
range of bucket 4 and 5 is around 40 in Table 1, we
can set the threshold to be 40 and declare that all
pages with the difference above 40 to be categorized
as cloaking pages. In that case, the precision and

Threshold PRECISION RECALL F value

1 0.355 1.000 0.502
5 0.423 0.828 0.560

10 0.480 0.799 0.560
20 0.534 0.758 0.627
40 0.580 0.671 0.622
80 0.633 0.498 0.588

160 0.685 0.388 0.496
320 0.695 0.262 0.380
640 0.752 0.196 0.311

1280 0.899 0.086 0.157

Table 2: F-measure for different thresholds based on
term difference.

recall are 0.580 and 0.671 respectively.

From Figure 2, we can make an estimation of what
percentage of our 250,000 page set are cloaking pages.
Since we know the total number of pages within each
bucket and the number of cloaking pages within the
30 manually checked pages from each bucket, the esti-
mation of total number of cloaking pages is the prod-
uct of the number of pages within each bucket and the
ratio of cloaking pages within the 30 pages. The re-
sult is 7,780, so we expect that we can identify nearly
8,000 cloaking pages (about 3%) within the 250,000
pages.

4.1.2 Link Difference

Similar to term difference, we also analyzed this data
sets on the basis of link differences. Here link differ-
ence means the number of different links between two
corresponding pages.

First we calculated the link difference between the
copy of C1 and C2 (termed LCC).We then calculated
the link difference between the copy of C1 and B1
(termed LBC). Finally we marked the page that have
a higher LBC than LCC as cloaking candidates. In
this way, we marked 8,205 candidates. The frequency
of these candidates also approximates a power-law
distribution like term cloaking. It is shown in Figure
3.

As with term difference, we also put these 8,205
candidates into 10 buckets. The range and number
of pages within each bucket is shown in Table 3.

From each bucket, we randomly selected 30 pages
and checked manually to see how many of them are
real cloaking pages. The result is shown in Figure 4.

It is obvious that the most of the pages from bucket
4 or above are cloaking pages. We also calculated the
F values for these thresholds corresponding to the
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Figure 3: Distribution of the difference of LCC and
LBC.

Bucket ID RANGE No. of Pages

1 x <= 5 4415
2 5 < x <= 10 787
3 10 < x <= 20 746
4 20 < x <= 35 783
5 35 < x <= 55 441
6 55 < x <= 80 299
7 80 < x <= 110 279
8 110 < x <= 145 182
9 145 < x <= 185 100

10 185 < x 173

Table 3: Buckets of link difference

range of each bucket. The result is shown in Table 4.
We can tell that 5 is an optimal threshold with the
best F value.

Since the number of pages having link difference
is smaller than the ones having term difference in
reality, fewer cloaking pages can be found by using
link difference alone, but are more accurate.

Threshold PRECISION RECALL F value

1 0.479 1.000 0.648
5 0.727 0.700 0.713

10 0.822 0.627 0.711
20 0.906 0.520 0.660
35 0.910 0.340 0.496
55 0.900 0.236 0.374
80 0.900 0.167 0.283

110 0.900 0.104 0.186
145 0.878 0.060 0.114
185 0.866 0.038 0.072

Table 4: F-measure for different thresholds based on
link difference.

Figure 4: The ratio of syntactic cloaking in each
bucket based on link difference.

Figure 5: Intersection of the four copies for a Web
page.

4.2 Detecting Cloaking in HOTdata

Based on the experience of manually checking for
cloaking pages for the first data set, we attempted
to detect syntactic cloaking automatically by using
all four copies of each page.

4.2.1 Algorithm of detecting cloaking auto-

matically

Our assumption about syntactic cloaking is that the
web site will send something consistent to the crawler
but send something different yet still consistent to
the browser. So, if there exists such terms that only
appear in both of the copies sent to the crawler but
never appear in any of the copies send to the browser
or vice versa, it is quite possible that the page is doing
syntactic cloaking. Here when getting the terms out
of each copy, we still use the “bag of words” approach,
i.e., we replace all the non-word characters within an
HTML file with blank and then get all the words out
of it for the intersection operation.

To easily describe our algorithm, the intersection
of four copies are shown as a Venn diagram in Fig-
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Bucket RANGE No. Accuracy

1 x <= 1 725 40%
2 1 < x <= 2 540 30%
3 2 < x <= 4 495 30%
4 4 < x <= 8 623 40%
5 8 < x <= 16 650 90%
6 16 < x <= 32 822 100%
7 32 < x <= 64 600 100%
8 64 < x <= 128 741 100%
9 128 < x <= 256 420 100%

10 256 < x 1120 100%

Table 5: Buckets of unique terms in area A and G

ure 5. We use capital letters from A to M to repre-
sent each intersection component of four copies. For
example, the area L contains content that only ap-
pears in HC1, but never appear in HC2, HB1 and
HB2; area F is the intersection of four copies, i.e.,
the content that appears on all of the four copies.
The most interesting components to us are areas
A and G. Area A represents terms that appear on
both browsers’ copies but never appear on any of the
crawlers’ copies, while area G represents terms that
appear on both crawlers’ copies but never appear on
any of the browsers’ copies.

So our algorithm of detecting syntactic cloaking
automatically is that for each web page, we calculate
the number of terms in area A and the number of
terms in area G. If the sum of these two numbers is
nonzero, we may mark this page as a cloaking page.

There are false negative examples for this algo-
rithm. A simple example is that suppose there is
a dynamic picture on the page, every time the web
server will randomly select one from 4 JPEG files
(a1.jpg to a4.jpg) to serve the request. It happens
that a1.jpg is sent every time when our crawler visits
this page, but a2.jpg and a3.jpg are sent when our
browser visit this page. By our algorithm, the page
will be marked as cloaking, but it can be easily ver-
ified that this is not the case. So, again we need a
threshold for the algorithm to work more accurately.

For the 47,170 URLs, we found 6466 pages that
have the sum of number of terms in area A and G
greater than 0. Again, we put them into 10 buckets,
as shown in Table 5. The third column is the number
of pages within this bucket.

From each bucket, we randomly selected 10 pages
and manually checked to see whether this page is
real syntactic cloaking. The accuracy is shown in
the fourth column in Table 5. We also calculated the
F-measure, the results are shown in Table 6.

Thresholds PRECISION RECALL F value

0 0.647 1.000 0.785
1 0.703 0.965 0.813
2 0.766 0.952 0.849
4 0.836 0.940 0.885
8 0.902 0.881 0.891

16 0.922 0.756 0.831
32 0.960 0.599 0.738
64 0.979 0.470 0.635

128 0.972 0.358 0.523
256 1.000 0.267 0.422

Table 6: F-measure of different threshold
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Figure 6: Percentage of syntactic cloaking pages
within google’s top responses.

Since the 4th and 5th bucket have highest F value
in Table 6, we choose the threshold to be the range
between bucket 4 and bucket 5, i.e., 8. So, our au-
tomated cloaking algorithm is revised to only mark
pages with the sum of area A and G greater than 8
as cloaking pages. So, for our second data set, all
pages in bucket 5 to bucket 10 are marked cloaking
pages. Finally, we marked 4,083 pages out of the
47,170 pages, i.e., about 9% of pages from the hot
query data set are syntactic cloaking pages.

4.2.2 Distribution of syntactic cloaking

within top rankings

Since we have identified 4,083 pages that utilize cloak-
ing, we can now draw the distribution of these cloak-
ing pages within different top rankings. Figure 6
shows the cumulative percentage of cloaking pages
within the Top 200 response lists returned by google.
As we can see, about 2% of top 50, about 4% of top
100 URLs and more than 8% of top 200 URLs do uti-
lize cloaking. The ratio is quite high and the cloaking
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A. Autos
B. Companies

C. Computing
D. Entertainment

E. Games

F. Health
G. House

H. Holidays

I. Local

J. Movies
K. Music

L. Research

M. Shopping

N. Sports
O. TV

P. Travel

Figure 7: Category-specific Cloaking.

may be helpful for these pages to be ranked high.

Since we retrieved top 10 hot queries from each of
16 categories from AOL, we can consider the topic
of the cloaking pages. Intuitively some popular cate-
gories, such as sports or computers, may contain more
cloaking pages in the top ranking list. So we also
calculated the fraction of cloaking pages within each
category. The results are shown in Figure 7. Some
categories, such as Shopping and Sports, are more
likely to have cloaked results than other categories.

4.2.3 Syntactic vs Semantic cloaking

Not all syntactic cloaking is considered unacceptable
to search engines. For example, a page sent to the
crawler that doesn’t contain advertising content or
a PHP session identifier which is used to distinguish
different real users is not a problem to search engines.
In contrast to acceptable cloaking, we define seman-
tic cloaking as cloaking behavior with the effect of
manipulating search engine results.

To make one more step about our cloaking study,
we randomly selected 100 pages from the 4,083 pages
we have detected as syntactic cloaking pages and
manually checked the percentage of semantic cloak-
ing among them. In practice, it is difficult to judge
whether some behavior is harmful to search engine
rankings. For example, some web sites will send login
page to browser, while send full page to crawler. So,
we end up with three categories: acceptable cloaking,
unknown and semantic cloaking.

From these 100 pages, we classified 33 pages as se-
mantic cloaking, 32 as unknown and 35 as acceptable
cloaking.

4.3 Different types of cloaking

In the process of manually checking 600 pages for
the above sections, we found several different types
of cloaking.

4.3.1 Types of term cloaking

We identified many different methods of sending dif-
ferent term content to crawlers and web browsers.
They can be categorized by the magnitude of the dif-
ference.

We first consider the case in which the content of
the pages sent to the crawler and web browser are
quite different.

• The page provided to the crawler is full of detail,
but the one to the web browser is empty, or only
contains frames or JavaScript.

• The web site sends text page to the crawler,
but sends non-text content (such as macrome-
dia Flash content) to web browser.

• The page sent to the crawler incorporates con-
tent, but the one sent to the web browser con-
tains only a redirect or 404 error response.

The second case is when content differs only par-
tially between the pages sent to the crawler and the
browser and the remaining content is identical, or one
copy has slightly more content than the other.

• The pages sent to the crawler contain more text
content than the ones to web browser. For ex-
ample, only the page sent to the crawler contains
keywords shown in Figure 8.

• Different redirection target URLs are contained
in the pages sent to the crawler and to the web
browser.

• The web site sends different titles, meta-
description or keywords to the crawler than to
web browser. For example, the header to browser
uses “Shape of Things movie info at Video Uni-
verse” as the meta-description, while the one
to the crawler uses “Great prices on Shape of
Things VHS movies at Video Universe. Great
service, secure ordering and fast shipping at ev-
eryday discount prices.”

• The page sent to the crawler contains JavaScript,
but no such JavaScript is sent to the browser, or
the pages have different JavaScripts sent to the
crawler than to web browser.
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game computer games PC games console games
video games computer action games adventure
games role playing games simulation games sports
games strategy games contest contests prize prizes
game cheats hints strategy computer games PC
games computer action games adventure games
role playing games Nintendo Playstation simula-
tion games sports games strategy games contest
contests prize prizes game computer games PC
games computer action games adventure games
role playing games simulation games sports games
strategy games contest contests prize prizes.

Figure 8: Sample of keywords content only sent to
the crawler.

• Pages to the crawler do not contain some banner
advertisements, while the pages to web browser
do.

• The NOSCRIPT element is used to define an
alternate content if a script is not executed. The
page sent to web browser has the NOSCRIPT

tag, while the page sent to the crawler does not.

4.3.2 Types of link cloaking

For link cloaking, we again group the situations by
the magnitude of the differences between different
versions of the same page. In one case, both pages
contain similar number of links and the other is that
both pages have quite different number of links.

For the first situation, examples found include:

• There are the same number of links within the
page sent to the crawler and web browser, but
the corresponding link pairs have a different for-
mat. For example, the link to web browser may
contain a PHP session id while the link to the
crawler does not. Another example is that the
page to the crawler only contains absolute URLs,
while the page to the browser contains relative
URLs that are in fact pointing to the same tar-
gets as the absolute ones.

• The links in the page to the crawler are direct
links, while the corresponding links within the
page to web browser are encoded redirections.

• The links to web browser are normal links, but
the links to the crawler are around small images
instead of texts.

• The website shows links to different style
sheets to web browser than to the crawler.
For example, the page to the crawler
contains “href=/styles/styles win ie.css”,
while the page to the browser contains
“href=/styles/styles win ns.css”.

In some cases, the number of links within the page
to the crawler and the page to the web browser can
be quite different.

• More links exist in the page sent to the crawler
than the page sent to web browser. For example,
these links may point to a link farm.

• The page sent to web browser has more links
than the page sent to the crawler. For example,
these links may be navigational links.

• The page sent to the browser contains some nor-
mal links, but in the same position of the page
sent to the crawler, only error messages saying
“no permission to include links” exist.

From the results shown within this section, it is
obvious that cloaking is not rare in the real Web. It
happens more often for hot queries or popular topics.

5 Results of Redirect

As we have discussed in Section 1, redirection can also
be used as a spamming technique. To get an insight
into how often the redirection appear and distribution
of different redirect methods, we use the HITSdata
set mentioned in Section 3. We don’t use all four
copies but only compare two copies for each page:
one from the simulated browser’s set (BROWSER)
and the other from the crawler’s set (CRAWLER).

5.1 Distribution

We check the distribution of four different types of
redirection: HTTP 301 Moved Permanently and 302
Moved Temporarily responses, the HTML meta re-
fresh tag, and the use of JavaScript to load a new
page.

In order to know the distribution of above four
different redirects, we tabulated the number of ap-
pearances of each type. For the first two types, the
situation is simple: we just count the pages with
response status of “301” and “302”. The last two
are more complicated; the HTTP refresh tag does
not necessarily mean a redirection and JavaScript

8
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TYPE CRAWLER BROWSER

301 20 22
302 56 60

Refresh tag 4230 4356
JavaScript 2399 2469

Table 7: Number of pages using different types of
redirection.

is even more complicated for redirection purpose.
For the first step, we just count the appearance of
“<meta http-equiv=refresh>” tag for the third type
and count the appearance of “location.replace” and
“window.location” for the fourth type. The results
for this first step are shown in Table 7.

To get a more accurate number of appearances of
the HTTP refresh tag, we examined this further. In
reality, the Refresh tag may just mean refreshing, not
necessarily to redirection to another page. For exam-
ple, the Refresh tag may be put inside a NOSCRIPT

tag for browsers that do not support JavaScript. To
estimate the number of real redirection by using this
refresh tag, we randomly selected 20 pages from the
4, 230 pages that use the refresh tag and checked them
manually. We found that 95% of them are real redi-
rection and only 5% are inside a NOSCRIPT tag. Be-
sides, some pages may have identical target URL as
themselves in the Refresh tag to keep refreshing them-
selves. We also counted these numbers. There are
47 pages out of 4, 230 pages within the CRAWLER

data set and 142 pages out of 4, 356 pages within the
BROWSER data set that refresh to themselves.

We did one more step for the 4, 214 (4, 356 - 142)
pages that are pages using Refresh tag and refresh to a
different page. Usually there is a time value assigned
within the refresh tag to show how long to wait before
refreshing. If this time is small enough, i.e., 0 or 1
seconds, users can not see the origin page but are
redirected to a new page immediately. We fetched
this time value for these 4, 214 pages and draw the
distribution of different time values from the range
of 0 seconds to 30 seconds in Figure 9. More than
50% of these pages refresh to a different URL after 0
seconds and about 10% refresh after 1 second.

To estimate the real distribution of the JavaScript
refresh method, we randomly selected 40 pages from
the 2, 399 pages that have been identified as candi-
dates for using JavaScript for redirection in the first
step. After manually checking these 40 files, we found
the 20% of them are real redirections, 32.5% of them
are conditional redirections, and the rest are not for
redirection purpose, such as to avoid showing the
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Figure 9: Distribution of delays before refresh.

page within a frame.
Sometimes the target URL and origin URL are

within the same site, while other times they are on
different sites. In order to know the percentage of
redirections that redirection to the same sites, we also
analyzed our collected data set for this information.
Since the JavaScript redirection is complicated, we
only count the first three types of redirection here.
The sum of the first three types of redirection is
4, 306. Within the CRAWLER data set, there are
2, 328 pages within these 4, 306 pages redirecting to
the same site, while for the BROWSER data set, the
number is 2, 453.

5.2 Redirection Cloaking

As we have mentioned in Section 4.3, the site may
return pages redirecting to different locations in case
of different user agents. We consider this redirection
cloaking.

We found that there are 153 pairs of pages out of
250, 000 pairs that have different response code for a
crawler and a normal browser when doing redirecting.
Usually these web sites will send 404 or 503 response
code to one and send 200 response code to the other.
We even found that there are 10 pages that use dif-
ferent redirection method for a crawler and normal
web browser. For example, they may use 302 or 301
for the crawler, but use refresh tag with the response
code 200 for a normal web browser.

6 Summary and Discussion

Detection of search engine spam is a challenging re-
search area. Cloaking and redirection are two impor-
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tant spamming techniques.
This study is based on a sample of a quarter of mil-

lion pages and top responses from a popular search
engine to hot queries on the Web. We identified dif-
ferent kinds of cloaking and gave an estimate of the
percentage of pages that are cloaked in the sample
and also show an estimation of distribution of differ-
ent redirect.

There are four issues that we would like to see ad-
dressed in future work. The first is that of a bias in
the dataset used. Our data sets (pages in or near the
top results for queries) do not nearly reflect the Web
as a whole. However, it might be argued that it re-
flects the Web that is important (at least for the pur-
poses of finding pages that might affect search engine
rankings through cloaking). The second is that this
paper does not address IP-based cloaking, so there
are likely pages that do indeed provide cloaked con-
tent to the major engines when they recognize the
crawling IP. We would welcome the partnership of a
search engine to collaborate on future crawls.

The final issue is the bottom line. While search
engines may be interested in finding and eliminat-
ing instances of cloaking, our proposed technique re-
quires three or four crawls. Ideally, a future technique
would incorporate a two-stage approach that identi-
fies a subset of the full web that is more likely to
contain cloaked pages, so that a full crawl using a
browser identity would not be necessary.

Our hope is that this study can provide a realistic
view of the use of these two techniques and will con-
tribute to robust and effective solutions to the iden-
tification of search engine spam.
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Abstract

We study the impact of collusion –nepotistic linking– in a
Web graph in terms of Pagerank. We prove a bound on the
Pagerank increase that depends both on the reset probabil-
ity of the random walkε and on the original Pagerank of
the colluding set. In particular, due to the power law dis-
tribution of Pagerank, we show that highly-ranked Web
sites do not benefit that much from collusion.

1 Introduction

This paper studies the effects of different linking topolo-
gies in the ranking function induced by the Pagerank algo-
rithm [13]. The Pagerank algorithm receives as input an
adjacency matrixLN×N, whereN is the number of Web
pages, and renormalizes each row ofL to sum 1, generat-
ing a transition matrixA. This transition matrix is slightly
modified by adding a “random jump”, i.e.: a transition
from each node to each of the other nodes using the uni-
form transition matrix – a matrixU such thatui j = 1/N.

P = (1− ε)A+ εU (1)
The Pagerank algorithm calculates the probabilitiespi

of the stationary state of the Markovian process induced
by matrix P. That is, the eigenvectorx corresponding to
the largest eigenvalue (which in the case of this matrix is
λ1 = 1) of the matrixP:

PTx = x

The Pagerank value of a page is used as an estimator
of the quality of a Web page based on properties of the
Web graph. The rationale for this estimation is that a high
quality page is a page with many in-links coming from
other high-quality pages.

This algorithm is expected to work much better than
simply counting in-links, as it might be more resistant
to what is called a “Sybil attack” [5]. A Sybil attack is
an attempt of altering a recommendation system by creat-
ing multiple identities; in this context, this means creating
multiple pages pointing to a single page.

The resistance of Pagerank to a Sybil attack comes from
the fact that the pages created for the attack can only in-
herit the reputation they are currently receiving. However,
in the case of Pagerank, the minimum is not zero, as even
without in-links a page gets a minimum score ofε

N .
The strategy of creating many pages pointing to a single

page is actually used on the Web, in fact, currently there
are thousands or millions of Web pages created specifi-
cally for the objective of deceiving the ranking function of
search engines [6]. “Because the Web environment con-
tains profit seeking ventures, attention getting strategies
evolve in response to search engine algorithms. For this
reason, any evaluation strategy which counts replicable
features of web pages is prone to manipulation”[13].

To the best of our knowledge, Pagerank by itself is not
used as the sole indicator of quality by any of the larger
search engines, but it is still an important part of the rank-
ing function of some of them.

In this paper:

• We present an analysis for collusion under a more
general case than the one presented in [15], this is,
we consider the original links that the colluding set
has.

• We prove that for a single page there is always some-
thing to win by colluding with other pages.

• We prove that the expected returns from collusion are
lower for highly-ranked pages.

The rest of this paper is organized as follows:Section2
summarizes previous work in this area, andSection3
presents an analysis predicting the increase of Pagerank
by using a collusion strategy.Section4 validates these
predictions in a synthetic graph, andSection5 studies a
real Web graph. Finally,Section6 presents our conclu-
sions and avenues for future work.

17



2 Previous Work

Several authors have observed the presence of spam pages
on the Web. Fetterlyet al. [7] showed that most of the out-
liers when observing statistics of Web page collections are
machine-generated spam pages –these pages may be de-
signed both to increase citation counts and to provide mul-
tiple “doorway” pages. Hence, the divergence between
the expected and the observed values can be used in some
cases to detect spam pages.

Eiron et al. [6] studied a 100-million page sample and
found that 11 of the top 20 URLs by Pagerank were porno-
graphic, and in all cases the specific technique used was
taking the Pagerank from random teleportation in many
pages and concentrate it into a single page by using links.

Zhanget al.[15] study the following collusion strategy:
pick a series of nodes with adjacent rankings, remove all
their out links and add links from each node to the node
before and after it in the list of nodes sorted by Pagerank.
They also prove the following upper bound on any collu-
sion strategy; letxorig be the original Pagerank of a page,
andxnew the Pagerank this page obtains after it colludes
is:

xnew

xorig
<

2
ε

They also prove that this bound is near 1/ε if M � N,
as a typical value forε is 0.15, the amplification factor
is roughly 7. They do not take into account the starting
Pagerank of the colluding set. We prove a tighter bound
that shows that colluding works mostly for pages with low
starting Pagerank.

Meyer [11] proved that if the second eigenvalue of an
irreducible Markov chain is small, then the chain is not
overly sensitive to small variations. Haveliwala and Kam-
var [9] proved that the second eigenvalue ofP is 1− ε,
therefore, a largeε produces a more stable matrix. Nget
al. [12] prove a similar result using a different approach:
as long asε is not too small, small variations in the matrix
do not generate large variations of Pagerank.

Agogino and Ghosh [1] studied a reinforcement learn-
ing method for automatically finding a linking strategy for
increasing the combined Pagerank of a set of domains.
Their strategy relies on a utility function that considers
the impact of every learner in the total Pagerank achieved
by the colluding group.

Clausen [3] studied the cost of an attack on Pagerank
considering that creating a new Web site requires a pay-
ment. In the same paper there is an analysis on how to
lump pages together for Pagerank calculation, disregard-
ing the internal link structure of each group.

In a recent article, Gÿongyi and Garcia-Molina [8]
study optimal structures for “link spam farms” and combi-
nations of them. A spam farm is an arrangement of links

with the objective of increasing the ranking of a single
target page. They prove that the optimal structure for a
spam farm is a series of pages pointing to and only to the
target page, while the target page points to some of all of
them. In this optimal structure, if there are other external,
“hijacked” links, they should also point to the target page.

3 Impact of Collusion in Pagerank

A group of nodes can collude to get a higher Pagerank by
manipulating the out-links of the group. We will assume
that the group’s objective is to maximize itstotal Pagerank
value.

Let N be the total number of nodes in Web graphG, M
the number of colluding nodes in sub-graphG′ – we will
assumeM�N. Let x be the total Pagerank of the collud-
ing nodes, so 1−x is the total Pagerank of the rest of the
graph. All the links in this graph are shown inFigure1.

Figure 1: Variables used in the analysis.

The total Pagerank entering the colluding nodesPRin is
given by the sum of three terms representing links from
random jumps, links from the non-colluding nodes and
internal links between colluding nodes. This is the same
approach taken by Clausen [3] to “lump” a set of pages
into a single node for Pagerank computation.

Pagerankin = Pjump+Pin +Psel f

For calculatingPin, we first take the sum over all nodes
pointing to the colluding set, instead of on all the links:

Pin = ∑
(a,b):(a,b)∈Ein

PRa

deg(a)

= ∑
a:a∈G−G′

PRap(a)

Wherep(a) is the fraction of links from nodea pointing
to the colluding setG′, and it can be zero if no link from
nodea points toG′.
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Now, let:

p = ∑a:a∈G−G′ PR(a)p(a)
∑a:a∈G−G′ PR(a)

= ∑a:a∈G−G′ PR(a)p(a)
1−x

So p is a weighted average ofp(a) over G−G′, in
which the weights are the Pagerank values of the nodes
in G−G′. The important issue is thatp cannot be con-
trolled by the colluding nodes, and will remain constant
whatever strategy is used. We can now write the equation
for Pin as:

Pin = (1− ε)(1−x)p

For Psel f we make a similar replacement. Ifs(b) is the
fraction of links from nodeb∈G′ pointing to the collud-
ing setG′, then let:

s = ∑b:b∈G′ PR(b)s(b)
∑a:a∈G′ PR(b)

= ∑b:b∈G′ PR(b)s(b)
x

Sos represents a weighted average ofs(a) overG′, and
this yields:

Psel f = (1− ε)xs

Now we can write the equation for the sum of the Page-
rank of the colluding nodes as:

Pagerankin = ε
M
N

+(1− ε)(1−x)p+(1− ε)xs

Solving the stationary statePagerankin = x yields:

xorig =
εM
N +(1− ε) p

(p−s)(1− ε)+1

The only thing the colluding nodes can do is to link
more internally than externally. This means thats→ s′,
with s′ > s, and the ratio between the resulting Pagerank
and the original Pagerank is:

xnew

xorig
= 1+

s′−s

p−s′+ 1
1−ε

(2)

A trivial observation is that ifs′ > s then:
xnew

xold
> 1

That is, there is always something to win by colluding
with other nodes. In particular, colluding by forming a

clique meanss′ → 1, and the ratio between the resulting
Pagerankxnew and the original Pagerank is:

xnew

xold
= 1+

1−s
p+ ε

1−ε
(3)

This ratio is inversely proportional to the Pagerank that
originally entered the colluding nodes. Therefore, if the
colluding set has a high connectivity at the beginning, the
returns from colluding will be poor, and viceversa.

For instance, if the starting set has very few, or no in-
links from the rest of the graph,p = 0, and at the begin-
ning s= 0 (originally all the out-links went to the rest of
the graph), then:

xnew

xold
=

1
ε
≈ 7

If the starting Pagerank is very good, and has all the
links from the non-colluding set we havep = 1, but has
no internal links at the beginning, then:

xnew

xold
= 2− ε

However, this situation is very unlikely, because if the
colluding set has all the in-links from the rest of the graph,
then it should also have some links from itself. In fact, if
we assume that in the original situation, the fraction of
links going to the colluding nodes was the same for all
nodes in the graph, thens= p, and the change in Pagerank
value is given by the following equation:

xnew

xold
=

1
p(1− ε)+ ε

(4)

The graph of Pagerank change forε = 0.15 and varying
values ofp is shown inFigure2. We can see that while the
starting fraction of links received remains roughly below
1% the returns are still maximum.
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Figure 2: Expected change of Pagerank values under different
starting conditionsp, usingε = 0.15.
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Focus on a single page In this section we have dis-
cussed the issue of increasing theaverage Pagerankof a
set of pages. This is not the same as increasing the Page-
rank of a single page as in the link spam farm structures
studied in [8]. A simple, brute-force strategy of creating
M (unlinked) pages, each with a single link pointing to a
target page yields a Pagerank for the latter of at most:

xbrute− f orce(M) =
ε
N

+(1− ε)ε
M
N

=
ε+ εM− ε2M

N

≈ ε
M
N

(M � 1;ε� 1)

This is, an individual page can get a increase of Page-
rank larger than in our analysis, but the average amplifi-
cation of all the pages in the colluding set will be as de-
scribed byEquation4.

4 Experiments with a Synthetic
Web Graph

We obtained a synthetic graph using a generative model
described by Kumaret al. [10]:

• Nodes are added one at a time.

• Each time a node is added,d links are added. For
adding a link, the source and destination nodes are
chosen as follows:

– With probabilityβ the source node is chosen at
random, and with probability 1−β the source
node is chosen with probability proportional to
the current out-degree of nodes.

– With probabilityα the destination is chosen at
random, and with probability 1−α the destina-
tion is chosen with a probability proportional to
the current in-degree of nodes.

We usedd = 7, α = 0.2 andβ = 0.45, parameters ex-
perimentally determined by Panduranganet al. [14] that
produce graphs simultaneously fitting the distributions of
in-degree, out-degree and Pagerank to the values observed
in real Web graphs. The parameters for the power-law in
the center part of the distributions are -2.1 for in-degree
and Pagerank, and -2.7 for out-degree.

It is very important to remove the disconnected nodes
from the resulting graph, as they affect the Pagerank nor-
malization factor. This is specially critical for groups of
pages with very low starting ranking, as they will cer-
tainly include the disconnected nodes, and those nodes
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Figure 3: Distribution of Pagerank values in the synthetic
graph.

will become connected after the collusion, modifying the
number of nodes involved in the total Pagerank calcula-
tion. Using the generative model described above, we cre-
ated a 125,000-nodes graph and then removed all the dis-
connected nodes to obtain a connected graph of roughly
106,000 nodes. We also made preliminary experiments
with a 10,000-nodes graph and the results were very sim-
ilar.

Instead of sampling according to the number of nodes,
we sampled according to the amount of Pagerank. We
divided the nodes in the Web graph into 10 segments,
each segment having 1/10th of the total Pagerank. Note
that because of the distribution of Pagerank, shown in
Figure3, these segments represent sets exponentially de-
creasing in size.

Inside each segment, we picked a group ofM = 100
nodes at random –except in the last segment, as the top
10% of Pagerank was found in only 50 nodes. We labeled
these groups 1. . .10.

In the following, we denote byPagerank valuesthe ac-
tual probabilities given by the Pagerank algorithm, this is,
the resulting values of the vectorx. We denote byranking
the order in which a page appears when pages are sorted
by Pagerank values. This number is normalized so 0 is the
last page and 1 is the top page by Pagerank value.

The original Pagerank values of the pages inside each
group, as well as the group averages, are shown inFig-
ure4.

As the distribution of the Pagerank values is very
skewed, the distribution of the rankings inside each of
these groups appears as shown inFigure4. Note that most
of the pages in group 1 have the same Pagerank value, so
their ranking is distributed uniformly in the 0.0-0.5 inter-
val, meaning that the bottom 50% of the pages have in
total just 10% of the Pagerank.
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Figure 4: Pagerank values and rankings, in both the original
and the modified graphs, using a clique inside each group.

4.1 Collusion via a complete sub-graph

The first strategy we tested was to create a clique (a com-
plete sub-graph) inside each group. Unlike the experi-
ments by [15], we did not remove any outgoing links, as
that is very easy to detect and can be penalized by search
engines. The rationale is that if within a group the number
of internal links outnumbers the number of external links
then that group will preserve its Pagerank.

Figure4 compares the Pagerank values before and after
the collusion.

Figure 5 plots the variation in both Pagerank values
and ranking after collusion. Clearly the bound 1/ε is too
coarse for medium to highly ranked pages, in those cases,
the starting incoming links should be considered, as in
Equation4.

Note that a factor of 3 in the Pagerank ranking is a very
large increase for a page. As shown inFigure5, all of the
pages from group one get a new ranking in the top 10%
by colluding. Moreover, all of the pages inside each group
get roughly the same ranking.
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Figure 5: Relative variation of Pagerank value and ranking us-
ing a clique inside each group. Link spamming only yields
returns for pages with low starting Pagerank values.

4.2 Collusion via a partial sub-graph

It might not be necessary to create all links, just enough
links to keep most of the Pagerank inside the colluding
set. We tested varying amounts of linking in the synthetic
graph. The amplification factor obtained by colluding is
shown inFigure6.
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Figure 6: Pagerank change under varying amounts of internal
links.

In most cases, adding just 50% of the links yields high
returns, and in the case of the group with the lower starting
Pagerank, even 30% of the links results in an increase of
Pagerank by a factor of 5.
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4.3 Other collusion strategies

We also tested collusion strategies involvingO(M) inter-
nal links instead ofO(M2) as is the case with cliques. The
two topologies we studied were a star and a ring, as de-
picted inFigure7.

Figure 7: Studied linking topologies.

In the case of the star, to avoid a positive bias in the
choice of the center of the star, we picked a new node
originally without in-links as the center of the star. The
comparison between the results under these two topolo-
gies is shown inFigure 8. There is a slight advantage
of forming a star instead of a ring for the lowly-ranked
sites, but for the other groups both strategies yield simi-
lar returns, and those are much lower than in the case of
cliques.

1.0

2.0

 1  2  3  4  5  6  7  8  9  10

N
ew

 v
al

ue
 / 

or
ig

in
al

 v
al

ue

Group

Star (Pagerank value)
Ring (Pagerank value)

Star (Ranking)
Ring (Ranking)

Figure 8: Pagerank under other linking topologies; both the
star and ring topologies yield much lower returns than forming
a clique.

5 Experiments with a Real Web
Graph

We started with a collection of 16 million pages from
Spanish Web sites obtained during 2004. In this case, we
are interested in complete Web sites instead of individual
pages, so we first converted multiple links between pages
in different Web sites, into a single link between two Web
sites. Two sitess1,s2 are linked iff there is at least one
page on sites1 pointing to a page ins2.

We obtained a graph with 310,486 Spanish sites and
3,037,913 directed links between them.

We calculated the Pagerank (or Hostrank [4]) values of
each Web site, and the corresponding ranking induced by
this value. Note that this is not the same as the sum of the
page-wise Pagerank for each page in the Web site, because
there may be multiple links between two Web sites [2].
The distribution of values for the Hostrank is shown in
Figure9.
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Figure 9: Distribution of Hostrank values in the Spanish Web
sites graph. There are a number of Web sites already colluding.

Comparing this with the distribution of Pagerank in the
synthetic graph, shown inFigure3, we can see that while
both exhibit a Zipf’s law with roughly the same parameter,
in the real Web there is a significant number of outliers.
Manual inspection of these outliers showed that most of
them are Web sites that can be considered as spam, for in-
stance, we found several groups of dozens of Web sites
with names such ashttp://cityname.company.es/,
in which cityname is the name of a Spanish city and
company is a tour operator or hotel company.

We modified this graph with the strategies we have dis-
cussed so far and computed the new Pagerank values after
each strategy. The objective of these strategies is to in-
crease the ranking of a small set of 242 sites (0.08% of the
total number of sites). The target sites for this experiments
were obtained from the directory of an agency certifying
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the quality of Spanish Web sites, and are expected to be
sites that adhere to certain standards of coding, content,
etc.

The average ranking of the Web sites in the selected
group is 0.75. Note that this only takes into account the
Pagerank value, while the quality of a site may come from
very different factors.

Table 1: Linking strategies.

Strategy Average ranking
Disconnect group 0.75

Normal 0.77
Central site 0.82

Ring, alphabetical 0.93
Ring, inverted 0.93

Star 0.96
Clique 0.99

Table 1 lists the linking strategies used. We started
by disconnecting all the links between the participating
nodes, that yields a minimum of ranking without collu-
sion at all. After that, we returned to the normal situation.
Then we added a central site that lists all the participat-
ing sites, then a ring of all the sites in alphabetical order,
and then an inverted ring. Finally, we also added a star
and a clique.Figure10 lists the resulting rankings under
different strategies.
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Figure 10: Relative rankings under different strategies. Each
dot represents a site.

Clearly, creating a complete subgraph is the best strat-
egy, as all of the sites in the group get very high positions.
We noted that the star strategy gets a similar average to
the ring strategy, but much lower variability.

Finally, we explored the possibility of adding less than
50% of the links of a complete subgraph. InFigure11, a
varying amount between 5% and 50% of the links in the
complete subgraph are added randomly.

0.980

0.985

0.990

0.995

1.000

 0%  5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55%

R
an

ki
ng

s

Percent of links of a complete subgraph

Average ranking

Figure 11: Relative rankings when adding a fraction of the
links of a complete subgraph.

We observe that even adding 5% of the links of a com-
plete subgraph, i.e.: each of the Web sites in the group
links to 5% of the other sites (in this case, roughly 10 Web
sites each one), then the average position (0.985) is higher
than all the strategies based on other topologies. After
adding about 20% of the links of the complete subgraph,
the gains increase linearly with the number of links.

6 Conclusions and Future Work

While any group of nodes can increase their Pagerank by
forming a tightly-connected sub-graph of the Web, the in-
crease they obtain by doing so is inversely related to their
starting Pagerank. This means that the Pagerank algo-
rithm is particulary vulnerable to Sybil attacks from the
nodes with low Pagerank. As the distribution of Pagerank
is very skewed, even a modest increase in Pagerank value
may imply a large increase in the ranking of a page.

Collusion strategies have never been studied in a more
microscopic scale. For instance, we noted slight differ-
ences when creating a ring of pages in two different or-
derings. There is an optimum ordering for forming a ring,
and we are interested in studying different strategies under
a limited “budget” in terms of links.

As future work, we would like to study other forms of
ranking calculation such as a two-level ranking scheme
that ranks entire Web sites and then Web pages.

While this article is mainly descriptive, we are also in-
terested in developing ways of detecting deceptive linking
practices to improve reputation algorithms. There is not
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a trivial answer to this problem. Finding regular struc-
tures [7] may not be enough as spammers can random-
ize their link spam farms. Measuring the ratio between
the total Pagerank of a group of pages and the Pagerank
they receive externaly [15] may detect groups of pages
that are strongly linked among them for legitimate rea-
sons. An open question is if the current linking practices
used amongst “good sites” should be used –and accepted–
or not.
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Abstract

Spammers intend to increase the PageRank of certain spam pages by creating a large number of links
pointing to them. We propose a novel method based on the concept of personalized PageRank that detects
pages with an undeserved high PageRank value without the need of any kind of white or blacklists or
other means of human intervention. We assume that spammed pages have a biased distribution of pages
that contribute to the undeserved high PageRank value. We define SpamRank by penalizing pages that
originate a suspicious PageRank share and personalizing PageRank on the penalties. Our method is
tested on a 31 M page crawl of the.de domain with a manually classified 1000-page stratified random
sample with bias towards large PageRank values.

1 Introduction

Identifying and preventing spam was cited as one of the top challenges in web search engines in a 2002 paper
[24]. Amit Singhal, principal scientist of Google Inc. estimated that the search engine spam industry had
a revenue potential of $4.5 billion in year 2004 if they had been able to completely fool all search engines
on all commercially viable queries [36]. Due to the large and ever increasing financial gains resulting from
high search engine ratings, it is no wonder that a significant amount of human and machine resources are
devoted to artificially inflating the rankings of certain web pages.

In this paper we concentrate on identifying pages backlinked by a large amount of other pages in order
to mislead search engines to rank their target higher. Our main goal is to compute for each Web page a
SpamRank value that measures the amount of the undeserved PageRank [32] of a page. Note that by the
nature of our methods we make no distinction between fair or malicious intent and our algorithm will likely
rank pages with a large amount of low quality backlinks as spam.

In order to understand the nature of link spam, we first consider the characterization of an “honest” link
by Chakrabati et al. [11]:

“hyperlink structure contains an enormous amount of latent human annotation that can be ex-
tremely valuable for automatically inferring notions of authority.”

∗Support from NKFP-2/0017/2002 project Data Riddle and various ETIK, OTKA and AKP grants
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Note that their notion of an authority plays similar role as a page with high PageRank value. In this sense
the existence of a hyperlink should affect ranking only if it expresses human annotation. As examples for
different uses of hyperlinks we refer to the article of Davison [13] that shows how to determine intra-site
links that may serve both navigational and certain spam purposes. In [22] more examples are given, among
others spamming guest books with links or mirroring with the sole purpose of the additional links to spam
targets.

We believe that identifying email spam or web content spam byhuman inspectionis relative easy and
automated methods cannot, in any case, perform as good as human judgement. Györgyi and Garcia-Molina
[22] list a few methods that confuse users including term hiding (background color text); cloaking (different
content for browsers and search engine robots) and redirection; some of these techniques can still be found
by inspecting the HTML code within the page source. Detecting redirection may already require certain
expertise: we found quite a number of doorway spam pages which used obfuscated JavaScript code to
redirect to their target.

Web link spam, in contrast, appears to be much harder to catch. As an example of a page that we ranked
high for spam, 2way.handyfritz.de looks like an “innocent” site for mobile logos and tones while a large
number of its backlinks are in fact spam messages in guestbooks. As a side effect we penalize pages often
cited in blogs and lists, for example to www.golem.de/0501/35735.html. Certain forms of a link spam are
however visible to Web users as well: thethema- ?.de clique contains no useful content, only long list of
links to itself and to various eBay.de auctions and pop-up ads fill its pages. The misuse of the Scout24.de
affiliate program is also quite popular among the German spammers.

We also see frequent examples of non-spam with undeserved PageRank. For example for affiliate pages,
link spamming is not always the purpose, but it is always a side-effect as they get paid to redirect traffic
to certain sites. Since we make no analysis of content, we cannot adopt a more restrictive notion of spam
favored by the search engine optimization community. Depending on the actual query where a page re-
ceives high PageRank, one may refer to techniques to attain the high rank asboostingif the page content
is otherwise relevant to the query, see e.g. [22]. Our method, in this sense, could be called de-boosting
with the purpose of assisting users to find pages where the maintainer has a lower budget on Search Engine
Optimization (SEO).

Preferred notions of Web link or content spam could be the following. In [22] a content is called spam if
it is completely irrelevant for the given search terms. However when implementing a search engine one aims
to use ranking methods that select the most relevant highest quality content irrespective to the amount of
search engine optimization for similar, but possibly lower quality content. In another definition [34] search
engine spam consists of features that maintainers would not add to their sites if search engines didn’t exist.
Link spam however could act even without the presence of a search engine by misleading users to visit
certain pages, in particular for the purpose of misusing affiliate programs.

An example of a site with quality content that we penalize high is city-map.de. Such sites are distributed
to so many pages across a large number of domain names that attain undeserved PageRank for these pages.
While methods such as HostRank [17] and the site boundary detection of Davison [13] also handle these
sites, we also notice their undeserved PageRank value by giving penalties for these sites. The natural idea
of combining methods is beyond the scope of the current report.

1.1 Our method: Where does your PageRank come from?

We assume that spammed pages have a biased distribution ofsupporterpages that contribute to the unde-
served high PageRank value. As described in detail in Section 2, a node’s PageRank is equal to the average
of its personalized PageRank where personalization is over all Web pages. By the recent algorithm of [21]
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Algorithm 1: Overall Structure of SpamRank Algorithm
for all Web pagesi do

Supporti,· ← empty sparse vector of reals
Phase 1: Supporter Generation

generate nodes into vector Supporti,· that have high contribution in the PageRank ofi
Phase 2: Penalization

for all Web pagesi do
give Penaltyi based on irregular behavior of PageRank over Supporti,·

Phase 3: SpamRank as Personalized PageRank (PPR) over Penalties
SpamRank← PPR(Penalty)

we are able to approximately compute all these values1 in order to deduce a large fraction of the origin of
the node’s PageRank value.

PageRank distribution in your neighborhood: looks honest or spam? Our key assumption is that
supporters of an honest page should not be overly dependent on one another, i.e. they should be spread
across sources of different quality. Just as in the case of the entire Web, the PageRank distribution of an
honest set of supporters should be power law. Particular examples that raise suspicion when a page receives
its PageRank only from very low ranked pages (and then from a very large number of them); such a page
has little quality support that makes the fairness of the large number of low-quality supporters questionable.
Another example is a set of supporters, all with PageRank values falling into a narrow interval. In this case
the large number of similar objects raise the suspicion that they appear by certain means of a cooperation.

The two key observations in detecting link farms, colluding pages or other means of PageRank boosting
in the neighborhood of a page are the following:

• Portions of the Web are self-similar; an honest set of supporter pages arise by independent actions
of individuals and organizations that build a structure with properties similar to the entire Web. In
particular, the PageRank of the supporters follows a power law distribution just as the case for the
entire Web.

• Link spammers have a limited budget; when boosting the PageRank of a target page, “unimportant”
structures are not replicated.

A perfect form of a link spam is certainly a full replica of the entire Web that automatic link based methods
are unable to distinguish from the original, honest copy. Our method hence targets at finding the missing
statistical features of dishonest page sets. In our experiment the power law distribution acts as this feature;
we remark that (i) other features may perform well and (ii) our algorithm can be fooled by targeting a link
farm towards the particular statistical property we employ, hence in a practical application a large number
of features should be combined that should probably include non-link based methods as well.

Our algorithm to define SpamRank, a value that measures the amount of undeserved PageRank score
of a Web page, consist of three main steps; the overall structure is given in Algorithm 1. First we select
the supporters of each given page by a Monte Carlo personalized PageRank simulation as described in
Section 2. Then in the second phase we penalize pages that originate a suspicious PageRank share, i.e. their

1Approximate personalized PageRank values are stored space-efficiently in a sparse matrix
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personalized PageRank is distributed with bias towards suspicious targets. This step is performed target
by target; we measure the similarity of the PageRank histogram of sources to an ideal power law model
suggested by [5, 27]. Then in the third step we simply personalize PageRank on the penalties. This last
step concentrates suspicious activities to their targets; in another way to state, we determine SpamRank by
a back-and-forth iteration between targets and sources.

1.2 Related work

With the advent of search engines web spamming appeared as early as 1996 [12, 2]. The first generation
of search engines relied mostly on the classic vector space model of information retrieval. Thus web spam
pioneers manipulated the content of web pages by stuffing it with keywords repeated several times.

Following Google’s success all major search engines quickly incorporated link analysis algorithms such
as HITS [26] and PageRank [32] into their ranking schemes. The birth of the highly successful PageRank
algorithm [32] was indeed partially motivated by the easy spammability of the simple in-degree count.
However Bianchini et al. [7] proved that for any link farm and any target set of pages such that each target
page is pointed to by at least one link farm page the sum of PageRank over the target set’s nodes is at least
large as a linear function of the number of pages in the link farm.

Bharat and Henzinger [6] improved HITS to reduce its sensitivity to mutually reinforcing relationships
between hosts. Generally, [31, 8, 35] discuss the (negative) effects of dense subgraphs (known as tightly-knit
communities, TKCs) on HITS and other related algorithms.

Section 7 of [29] and the references therein give an overview of the theoretical results underlying the
TKC effect that indicate a very weak TKC-type spam resistance of HITS and a somewhat better but still
unsatisfying one of PageRank. The results show that HITS is unstable, its hub and authority ranking values
can change by an arbitrary large amount if the input graph is perturbed. On the other hand, PageRank values
are stable, but the ranking order induced by them is still unstable.

Davison [13] applied a decision tree trained on a broad set of features to distinguish navigational and
link-spam (dubbed as nepotistic) links from the good ones. To the best of our knowledge Davison’s work is
the first openly published research paperexplicitlydevoted to the identification of link spam. More recently
Amitay et al. [3] extracted features based on the linkage patterns of web sites. Clustering of the feature
space produced a decent amount clusters whose members appeared to belong to the same spam ring.

Recently Fetterly et al. [18] demonstrated that a sizable portion of machine generated spam pages can be
identified through statistical analysis. Outliers in the distribution of various web page properties – including
host names and IP addresses, in- and out-degrees, page content and rate of change – are shown to be mostly
caused by web spam.

Eiron et al. [17] gives evidence that HostRank – PageRank calculated over the host graph – is more
resilient against link spam. HostRank’s top list contained far fewer questionable URLs than PageRank’s
because of the relatively reduced weight given to link farm sites. This finding is in good agreement with the
before mentioned linear spammability of PageRank [7].

Gyöngyi et al. [23] show that spam sites can be further pushed down in HostRank ordering if we person-
alize HostRank on a few trusted hub sites. Their method is semi automatic, the trusted 180 seed pages were
carefully hand picked from 1250 good hub pages distilled automatically using Inverse PageRank2. From the
same authors, [22] gives a detailed taxonomy of current web spamming techniques.

Zhang et al. [39] argue that the PageRank of colluding nodes (i.e. pages within the same dense, cliquish
2Although [23] makes no citation on Inverse PageRank, computing PageRank on the transposed web graph for finding hubs has

been independently introduced previously in [14, 20].
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subgraph) is highly correlated with1/ε, whereε denotes the teleportation probability. Their method in-
creases the probability of jump from nodes with large correlation coefficients. The resulting Adaptive Ep-
silon scheme is shown to be resistant against artificial, hand-made manipulations implanted by the authors
to a real world web graph crawled by the Stanford WebBase project. Baeza-Yates et al. [4] improve Zhang
et al.’s analysis and experimentally study the effect of various collusion topologies.

Wu and Davison [38] identify a seed set of link farm pages based on the observation that the in- and
out-neighborhood of link farm pages tend to overlap. Then the seed set of bad pages is iteratively extended
to other pages which link to many bad pages; finally the links between bad pages are dropped. Experiments
show that a simple weighted indegree scheme on the modified graph yields significantly better precision for
top ten page hit lists than the Bharat-Henzinger HITS variant. Moreover link farm sites with not too high
original HostRank suffer a drastic loss when HostRank is calculated over the pruned graph.

As for a broader outlook, email spam is thoroughly discussed in the proceedings of the recently set up
conference [16]. The sensitivity of e-commerce collaborative filtering algorithms to spam attacks is analyzed
empirically in [28]. Dwork et al. [15] present spam resistant algorithms for rank aggregation in meta search
engines.

2 Preliminaries

In this section we briefly introduce notation, and recall definitions and basic facts about PageRank. We also
describe the Monte Carlo simulation for Personalized PageRank of [21].

Let us consider the web as a graph: let pages form a vertex set and hyperlinks define directed edges
between them. LetA denote the stochastic matrix corresponding to random walk on this graph, i.e.

Aij =
{

1/outdeg(i) if pagei points toj,
0 otherwise.

ThePageRankvectorp = (p1, . . . ,pN ) is defined as the solution of the following equation [9]

pi = (1− ε) ·
N∑

j=1

pjAji + ε · ri ,

wherer = (r1, . . . , rN ) is the teleportation vector andε is the teleportation probability. Ifr is uniform,
i.e. ri = 1/N for all i, thenp is the PageRank. For non-uniformr the solutionp is called personalized
PageRank; we denote it by PPR(r). It is easy to see that PPR(r) is linear inr [25]; in particular

pi =
1
N

∑
v

PPRi(χv)(1)

whereχv is the teleportation vector consisting of all 0 except for nodev whereχv(v) = 1.
By equation (1) we may say that the PageRank of pagei arises as the contribution of personalization

over certain pagesv where PPRi(χv) is high. We say that pagev supportsi to the above extent.
As noticed independently by [20, 25], the (personalized) PageRank of a vertex is equal to the probability

of a random walk terminating at the given vertex where the length is from a geometric distribution: we
terminate in stept with probabilityε · (1− ε)t. To justify, notice that PageRank can be rewritten as a power
series

PPR(r) = ε ·
∞∑

t=0

(1− ε)tr ·At.(2)
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The termr ·At corresponds to a random walk of lengtht andε · (1− ε)t is the probability of termination.
The fact that PageRank can be computed as the probability over certain random walks gives rise to the

following algorithm [21] that we use in our procedure. We generate large enough number of random walks
starting at vertexj and add up probabilitiesε(1 − ε)t for their endpointsi; based on the counts we get
Supportj,i as an unbiased estimator of PPR(χj)i. Experiments in [21] suggest that a thousand simulations
suffice in order to distinguish high and low ranked pages. The overall idea is summarized in Algorithm 2;
we use the implementation described in [21] that differs from the above simplified description in two key
aspects. First, for efficiency random walks are generated edge by edge; in one iteration each random walk is
augmented by an edge. For such an iteration the set of random walks is sorted by their endvertex; then the
iteration can be performed in a single edge scan of the Web graph. Finally we need a last sort over the set of
random walks by endvertex; then for a single endvertexi all vertices are collected that support vertexi.

Algorithm 2: Phase 1 outline for finding supporters by Monte Carlo simulation. Actual implementation uses
external sort [21].

for all Web pagesi do
for ` = 1, . . . , 1000 do

t← random value from geometric distribution with parameterε
j ← endvertex of a random walk of lengtht starting ati
Supportj,i ← Supportj,i + ε(1− ε)t

3 Algorithm

We define SpamRank, a measure of undeserved PageRank share of Web page, through a three-phase algo-
rithm (Algorithm 1). The algorithm first identifies candidate sources of undeserved PageRank scores. In
Phase 1 we select the supporters of each page by the Monte Carlo simulation of [21]. Then in Phase 2
pages receive penalties based on how many potential targets are affected and how strong is the influence
on their PageRank values. Finally in Phase 3 we defineSpamRankas PageRank personalized on the vector
of penalties, in a similar way as, by folklore information, Google’s BadRank [1] is computed (on the Web
graph with reverse edge direction) personalized on identified spam.

In Phase 1 (Algorithm 2) we compute the approximate personalized PageRank vector of all pagesj.
We use the Monte Carlo approximation of [21]; this algorithm under practically useful parameter settings
computes a set of roughly 1,000 nodesi together with a weight Supporti,j . This weight can be interpreted
as the probability that a random PageRank walk starting atj will end in i.

Before proceeding with the penalty computation in Phase 2, we invert our data (by an external sort) and
for each pagei we consider the list of pagesj such thati is ranked high when personalized onj; the strength
is given by Supporti,j as above. Notice that Supporti,j arises from a Monte Carlo simulation and hence its
value is 0 for allj where the actual personalized PageRank value is negligible.

For a fixed pagei, penalties are defined by considering the PageRank histogram of alli with Supporti,j >
0 for pages that receive enough supporters. Pages with less thann0 supporters (in our experimentn0 =
1000) are ignored; supporter pages that spread their personalized PageRank to targets with less thann0

incoming paths are of little spamming power anyway.
In the heart of our algorithm we find the method of identifying irregularities in the PageRank distribution

of a page’s supporters. Given such a measureρ ≤ 1 whereρ = 1 means perfect regularity, we proceed by
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Algorithm 3: Phase 2 Penalty Calculation for Web pages, two variants.
Initialize vector Penalty by all 0
for all Web pagesi with at leastn0 supportersj with nonzero Supporti,j do

ρ← regularity of the supporters ofi
if ρ < ρ0 then

for all Web pagesj with Supporti,j > 0 do

Penaltyj ← Penaltyj +
{

(ρ0 − ρ) {Variant I}
(ρ0 − ρ) · Supporti,j {Variant II}

{we useρ0 = 0.85}
for all Web pagesi do

if Penaltyi > 1 then
Penaltyi ← 1

penalizing all the supporter pages proportional to(ρ0 − ρ) if the measure is below a thresholdρ0. In our
experiments the variant where penalties are also proportional to the strength of the support, Supporti,j ,
proves slightly more effective. Also we put an upper limit of 1 for the penalties of a single page; penalties
are otherwise accumulate for pages that participate in several irregular supporter sets.

3.1 Global properties of the Web graph

The fully automatic detection of irregular sets of supporters forms crucial part of our algorithm, hence we
briefly describe the intuition behind our method. Key ingredients are

• Rich get richer evolving models: The in-degree and the PageRank of a broad enough set of pages
should follow power law distribution.

• Self-similarity: A large-enough supporter set should behave similar to the entire Web.

We build on widely known models of the evolution of the Web [5, 27] that describe global properties
such as the degree distribution or the appearance of communities. These models indicate that the overall
hyperlink structure arises by copying links to pages depending on their existing popularity, an assumption
agreeing with common sense. For example in the most powerful model [27] pages within similar topics
copy their links that result in “rich gets richer” and we see a power law degree distribution.

The distribution of PageRank behaves very similar to that of the indegree as noticed among others
in [33]. In all Web crawls considered by experiments PageRank has a power law distribution. Clearly
PageRank and in-degree should be related as each page has itsε/N teleportation share of PageRank and
propagates this value through out-links. Figures about PageRank and in-degree correlation vary; some
claim a value close to 0 but typically a moderate value close to 0.5 is reported; as an example, the authors
of [30] corrected their initial low correlation value to 0.34 in personal communication.

When looking at individual pages, models could in theory completely lose all their predictive power. In
practice however strong self-similarity of various portions of the Web is observed [5] that may indicate that
the PageRank in a neighborhood should have the same statistical properties as in the entire Web.

Stating in an opposite way, we argue that the neighborhood of a spam page will look different from an
honest one. The neighborhood of a link spam will consist of a large number of artificially generated links.
These links likely come from similar objects; the same fine granularity obtained by the rich gets richer
principle is harder to be locally replicated.
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3.2 Phase 2: Penalty generation

We are ready to fill in the last detail (Algorithm 4) of our SpamRank algorithm. Firstly for a pagei we
may consider the histogram of either the PageRank of all of its supporter pagesj with Supporti,j > 0 or
the product Supporti,j · PageRankj for all pages. While the latter variant appears more sophisticated, in our
experiments we find Variant A perform slightly better.

Algorithm 4: Irregularity Calculation for Web pagei, two variants.
Create a list of buckets fork = 0, 1, . . .
for all Web pagesj with Supporti,j > 0 do

r =
{ PageRankj {Variant A}

Supporti,j · PageRankj {Variant B}
Add j to bucketk with a · bk−1 < r ≤ a · bk {we usea = 0.1, b = 0.7}

for all nonempty bucketsk = 0, 1, . . . do
Xk ← k, Yk ← log(|bucketi|)

ρ← Pearson-correlation(X, Y )

Given the PageRank histogram as above, we use a very simple approach to test its fit to a power law
distribution. We split pages into buckets by PageRank; we let bucket boundary values grow exponentially as
a · bk. We usea = 0.1 andb = 0.7; the choice has little effect on the results. If the PageRank values follow
a power law distribution such that the`-th page in order has rank proportional toc · `−α, then the theoretic
size of bucketk should be∫ a·bk+1

a·bk
c · `−α d` = c′(bk·(−α−1) − b(k+1)·(−α−1))

= c′′bk·(−α−1).

Hence logarithm of the theoretical count within bucketk is linear in k. In our algorithm we penalize
proportional to the Pearson correlation coefficient between the index and the logarithm of the count within
the bucket as one possible measure for testing a line fit over the data.

4 Experiments

4.1 Data set

Torsten Suel and Yen-Yu Chen kindly provided us with the web graph and the set of URLs extracted from
a 31.2 M page crawl of the.de domain. The crawl was carried out by the Polybot crawler [37] in April
2004. This German graph is denser than the usual web graphs, it has 962 M edges, which implies an average
out-degree of 30.82.

While all the algorithms mentioned in Section 3 can be implemented both in external memory and in
a distributed network of workstations, we applied a trivial graph compression method to speed our exper-
iments up by using internal memory. The compressed graph size is 1.3 GB. Computing the Monte Carlo
Personalized PageRank for all the nodes took 17 hours, creating the inverted PPR database required 4 hours
and resulted in a 14 GB database. Determining SpamRank’s personalization vector took 20 minutes, which
was followed by another 20 minutes of PageRank computation by simple power method. All programs were
ran on a single Pentium 4 3.0 GHz machine with Linux OS.
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Figure 1: Distribution of categories in the evaluation sample

4.2 Results

To evaluate the signals given by SpamRank we chose a subset of the methods presented in [23]. Firstly we
ordered the pages according to their PageRank value and assigned them to 20 consecutive buckets such that
each bucket contained 5% of the total PageRank sum with bucket 1 containing the page with the highest
PageRank. From each bucket we chose 50 URLs uniformly at random, resulting in a 1000 page sample
heavily biased toward pages with high PageRank. Three of the authors received a 400 page subset of the
sample, which we manually classified into one of the following categories: reputable, web organization,
advertisement, spam, non-existent, empty, alias, and unknown (see [23] for detailed definition of the cate-
gories).

We observed a poor pairwiseκ value [10] of 0.45 over the 100 pairs of common URLs. The majority of
disagreements could be attributed to different rating of pages in affiliate programs and certain cliques. This
shows that assessing link spam is nontrivial task for humans as well. By considering all remarks available
concerning the judgements over the common set of URLs and using the experience gathered so far, one of
the authors revised the classifications for the full 1000 page sample.

We observe relative fast changes among sample pages over time, in particular spam pages changing to
non-existent. Judgements after final revision reflect the state as of April 2004.

Figure 1 shows the distribution of categories among the sample. Throwing away the non-existent, empty,
unknown and alias pages gave us a usable 910 page sample. Note that the proportion of spam pages in our
sample is somewhat higher than in previous studies [23, 18]. We attribute this to the denser web graph and
the known notoriousness of spammers over the .de domain [19]. Because of the abundance of pages from
the eBay.de domain – 0.8 M pages in the dataset – and due to the misuse of its affiliation program, we
decided to treat pages from eBay.de as a separate subcategory in the next two figures.
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Figure 2: Distribution of categories among PageRank buckets

Figure 2 depicts the distribution of each category conditioned on the PageRank bucket. It can clearly be
seen that a large amount of spam pages made it to the top two PageRank buckets where the percentage of
spam is even higher than in the full sample.

Using the SpamRank ordering we again assigned each page to one of the 20 SpamRank buckets, the
ith SpamRank bucket having exactly the same number of pages in it as theith PageRank bucket. Figure 3
demonstrates that the first four SpamRank buckets contain a very large amount of spam; these buckets are
low in truly reputable non-eBay content.

It is important to note that the ordering induced by SpamRank is very different from PageRank, therefore
we cannot assess the properties of SpamRank using traditional precision/recall curves calculated over the
original sample as it was drawn according to the PageRank distribution. We refrained from classifying a
complete new sample according to the SpamRank distribution, instead we only drew a new random sample
of 5× 20 pages from the top 5 SpamRank buckets. As it can be seen in Figure 4 the top SpamRank buckets
are rich in spam pages, though more than half of the pages in these buckets are not spam. Manual inspection
of the non-spam pages revealed that they are predominantly pages from sites with dense, templatic internal
structure such as forums, online retail catalogues and structured document archives. In terms of PageRank,
the machine generated internal link structure of these sites behaves exactly like a large link farm, therefore
we believe it is justified to mark them as pages with artificially inflated PageRank value.

Finally in Figure 5 we plotted the average difference between the PageRank and SpamRank bucket
number of pages separately for spam and reputable pages (including eBay.de) in each PageRank bucket.
The average demotion in SpamRank compared to PageRank is significantly higher for reputable pages. The
(small) positive demotion for spam pages is explained by the fact that the top SpamRank buckets contain a
number of fresh, either spammy or cliquish pages (see Figure 4) not included in the original sample.
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Figure 3: Distribution of categories among SpamRank buckets. Sampling is stratified using PageRank.
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5 Conclusions

We presented SpamRank, a three-stage, scalable Monte Carlo algorithm for computing a personalized Page-
Rank vector biased toward link spam pages. Our experiments demonstrated that SpamRank is indeed ca-
pable of differentiating among spam and non-spam pages. A number of questions left to subsequent work
are as follows. Explore the effects of parameters and assess variants of the algorithm (e.g. penalty depen-
dent on the PageRank of a suspicious target page). Produce a ranking that retains the reputable part of
PageRank. Incorporate SpamRank into a ranking function and measure its effect on precision for popular
or financially lucrative queries. Lastly compare and evaluate SpamRank against Adaptive Epsilon [39] and
Wu and Davison’s method [38], the other publicly known PageRank schemes designed to be spam-resistant
without human effort.
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Abstract

Web spamming refers to actions intended to mislead
search engines into ranking some pages higher than
they deserve. Recently, the amount of web spam has in-
creased dramatically, leading to a degradation of search
results. This paper presents a comprehensive taxon-
omy of current spamming techniques, which we believe
can help in developing appropriate countermeasures.

1 Introduction

As more and more people rely on the wealth of informa-
tion available online, increased exposure on the World
Wide Web may yield significant financial gains for in-
dividuals or organizations. Most frequently, search en-
gines are the entryways to the Web; that is why some
people try to mislead search engines, so that their pages
would rank high in search results, and thus, capture
user attention.

Just as with emails, we can talk about the phenom-
enon of spamming the Web. The primary consequence
of web spamming is that the quality of search results
decreases. For instance, at the time of writing this
article, the second result returned by a major search
engine for the query “Kaiser pharmacy” was a page
on the spam web site techdictionary.com. This site
contains only a few lines of useful information (mainly
some term definitions, probably copied from a real dic-
tionary), but consists of thousands of pages, each re-
peating the same content and pointing to dozens of
other pages. All the pages were probably created to
boost the rankings of some others, and none of them
seems to be particularly useful for anyone looking for
pharmacies affiliated with Kaiser-Permanente.

The secondary consequence of spamming is that
search engine indexes are inflated with useless pages,
increasing the cost of each processed query.

To provide low-cost, quality services, it is critical for
search engines to address web spam. Search engines
currently fight spam with a variety of often manual

techniques, but as far as we know, they still lack a
fully effective set of tools for combating it. We believe
that the first step in combating spam is understanding
it, that is, analyzing the techniques the spammers use
to mislead search engines. A proper understanding of
spamming can then guide the development of appro-
priate countermeasures.

To that end, in this paper we organize web spam-
ming techniques into a taxonomy that can provide a
framework for combating spam. We also provide an
overview of published statistics about web spam to un-
derline the magnitude of the problem.

There have been brief discussions of spam in the sci-
entific literature [3, 6, 12]. One can also find details for
several specific techniques on the Web itself (e.g., [11]).
Nevertheless, we believe that this paper offers the first
comprehensive taxonomy of all important spamming
techniques known to date. To build our taxonomy, we
worked closely with experts at one of the major search
engine companies, relying on their experience, while at
the same time investigating numerous spam instances
on our own.

Some readers might question the wisdom of revealing
spamming secrets, concerned that this might encourage
additional spamming. We assure readers that nothing
in this paper is secret to the spammers; it is only most
of the web users who are unfamiliar with the techniques
presented here. We believe that by publicizing these
spamming techniques we will raise the awareness and
interest of the research community.

2 Definition

The objective of a search engine is to provide high-
quality results by correctly identifying all web pages
that are relevant for a specific query, and presenting
the user with some of the most important of those rel-
evant pages. Relevance is usually measured through
the textual similarity between the query and a page.
Pages can be given a query-specific, numeric relevance
score; the higher the number, the more relevant the
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page is to the query. Importance refers to the global
(query-independent) popularity of a page, as often in-
ferred from the link structure (e.g., pages with many
incoming links are more important), or perhaps other
indicators. In practice, search engines usually combine
relevance and importance, computing a combined rank-
ing score that is used to order query results presented
to the user.

We use the term spamming (also, spamdexing) to re-
fer to any deliberate human action that is meant to
trigger an unjustifiably favorable relevance or impor-
tance for some web page, considering the page’s true
value. We will use the adjective spam to mark all those
web objects (page content items or links) that are the
result of some form of spamming. People who perform
spamming are called spammers.

One can locate on the World Wide Web a handful of
other definitions of web spamming. For instance, some
of the definitions (e.g., [13]) are close to ours, stating
that any modification done to a page solely because
search engines exist is spamming. Specific organiza-
tions or web user groups (e.g., [9]) define spamming by
enumerating some of the techniques that we present in
Sections 3 and 4.

An important voice in the web spam arena
is that of search engine optimizers (SEOs), such
as SEO Inc. (www.seoinc.com) or Bruce Clay
(www.bruceclay.com). The activity of some SEOs
benefits the whole web community, as they help au-
thors create well-structured, high-quality pages. How-
ever, most SEOs engage in practices that we call spam-
ming. For instance, there are SEOs who define spam-
ming exclusively as increasing relevance for queries not
related to the topic(s) of the page. These SEOs endorse
and practice techniques that have an impact on impor-
tance scores, to achieve what they call “ethical” web
page positioning or optimization. Please note that ac-
cording to our definition, all types of actions intended
to boost ranking (either relevance, or importance, or
both), without improving the true value of a page, are
considered spamming.

There are two categories of techniques associated
with web spam. The first category includes the boost-
ing techniques, i.e., methods through which one seeks
to achieve high relevance and/or importance for some
pages. The second category includes hiding techniques,
methods that by themselves do not influence the search
engine’s ranking algorithms, but that are used to hide
the adopted boosting techniques from the eyes of hu-
man web users. The following two sections discuss each
of these two categories in more detail.
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Figure 1: Boosting techniques.

3 Boosting Techniques

In this section we present spamming techniques that in-
fluence the ranking algorithms used by search engines.
Figure 1 depicts our taxonomy, in order to guide our
discussion.

3.1 Term Spamming

In evaluating textual relevance, search engines consider
where on a web page query terms occurs. Each type of
location is called a field. The common text fields for a
page p are the document body, the title, the meta tags
in the HTML header, and page p’s URL. In addition,
the anchor texts associated with URLs that point to
p are also considered belonging to page p (anchor text
field), since they often describe very well the content of
p. The terms in p’s text fields are used to determine the
relevance of p with respect to a specific query (a group
of query terms), often with different weights given to
different fields. Term spamming refers to techniques
that tailor the contents of these text fields in order to
make spam pages relevant for some queries.

3.1.1 Target Algorithms

The algorithms used by search engines to rank web
pages based on their text fields use various forms of
the fundamental TFIDF metric used in information re-
trieval [1]. Given a specific text field, for each term t
that is common for the text field and a query, TF(t)
is the frequency of that term in the text field. For
instance, if the term “apple” appears 6 times in the
document body that is made up of a total of 30 terms,
TF(“apple”) is 6/30 = 0.2. The inverse document fre-
quency IDF(t) of a term t is related to the number
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of documents in the collection that contain t. For in-
stance, if “apple” appears in 4 out of the 40 documents
in the collection, its IDF(“apple”) score will be 10. The
TFIDF score of a page p with respect to a query q is
then computed over all common terms t:

TFIDF(p, q) =
∑

t∈p and t∈q

TF(t) · IDF(t)

With TFIDF scores in mind, spammers can have two
goals: either to make a page relevant for a large number
of queries (i.e., to receive a non-zero TFIDF score), or
to make a page very relevant for a specific query (i.e.,
to receive a high TFIDF score). The first goal can be
achieved by including a large number of distinct terms
in a document. The second goal can be achieved by re-
peating some “targeted” terms. (We can assume that
spammers cannot have real control over the IDF scores
of terms. Moreover, some search engines ignore IDF
scores altogether. Thus, the primary way of increas-
ing the TFIDF scores is by increasing the frequency of
terms within specific text fields of a page.)

3.1.2 Techniques

Term spamming techniques can be grouped based on
the text field in which the spamming occurs. Therefore,
we distinguish:

• Body spam. In this case, the spam terms are in-
cluded in the document body. This spamming
technique is among the simplest and most pop-
ular ones, and it is almost as old as search engines
themselves.

• Title spam. Today’s search engines usually give a
higher weight to terms that appear in the title of
a document. Hence, it makes sense to include the
spam terms in the document title.

• Meta tag spam. The HTML meta tags that appear
in the document header have always been the tar-
get of spamming. Because of the heavy spamming,
search engines currently give low priority to these
tags, or even ignore them completely. Here is a
simple example of a spammed keywords meta tag:

<meta name=“keywords” content=“buy, cheap,
cameras, lens, accessories, nikon, canon”>

• Anchor text spam. Just as with the document ti-
tle, search engines assign higher weight to anchor
text terms, as they are supposed to offer a sum-
mary of the pointed document. Therefore, spam
terms are sometimes included in the anchor text of
the HTML hyperlinks to a page. Please note that

this spamming technique is different from the pre-
vious ones, in the sense that the spam terms are
added not to a target page itself, but the other
pages that point to the target. As anchor text
gets indexed for both pages, spamming it has im-
pact on the ranking of both the source and target
pages. A simple anchor text spam is:

<a href=“target.html”>free, great deals, cheap, in-
expensive, cheap, free</a>

• URL spam. Some search engines also break down
the URL of a page into a set of terms that are used
to determine the relevance of the page. To exploit
this, spammers sometimes create long URLs that
include sequences of spam terms. For instance,
one could encounter spam URLs like:

buy-canon-rebel-20d-lens-case.camerasx.com,
buy-nikon-d100-d70-lens-case.camerasx.com,
. . .

Some spammers even go to the extent of setting up
a DNS server that resolves any host name within
a domain.

Often, spamming techniques are combined. For in-
stance, anchor text and URL spam is often encoun-
tered together with link spam, which will be discussed
in Section 3.2.2.

Another way of grouping term spamming techniques
is based on the type of terms that are added to the text
fields. Correspondingly, we have:

• Repetition of one or a few specific terms. This way,
spammers achieve an increased relevance for a doc-
ument with respect to a small number of query
terms.

• Dumping of a large number of unrelated terms, of-
ten even entire dictionaries. This way, spammers
make a certain page relevant to many different
queries. Dumping is effective against queries that
include relatively rare, obscure terms: for such
queries, it is probable that only a couple of pages
are relevant, so even a spam page with a low rel-
evance/importance would appear among the top
results.

• Weaving of spam terms into copied contents.
Sometimes spammers duplicate text corpora (e.g.,
news articles) available on the Web and insert
spam terms into them at random positions. This
technique is effective if the topic of the original
real text was so rare that only a small number of
relevant pages exist. Weaving is also used for di-
lution, i.e., to conceal some repeated spam terms
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within the text, so that search engine algorithms
that filters out plain repetition would be misled.
A short example of spam weaving is:

Remember not only airfare to say the right plane
tickets thing in the right place, but far cheap travel
more difficult still, to leave hotel rooms unsaid the
wrong thing at vacation the tempting moment.

• Phrase stitching is also used by spammers to create
content quickly. The idea is to glue together sen-
tences or phrases, possibly from different sources;
the spam page might then show up for queries on
any of the topics of the original sentences. For
instance, a spammer using this paper as source
could come up with the following collage:

The objective of a search engine is to provide high-
quality results by correctly identifying. Unjustifiably
favorable boosting techniques, i.e., methods through
which one seeks relies on the identification of some
common features of spam pages.

3.2 Link Spamming

Beside term-based relevance metrics, search engines
also rely on link information to determine the impor-
tance of web pages. Therefore, spammers often create
link structures that they hope would increase the im-
portance of one or more of their pages.

3.2.1 Target Algorithms

For our discussion of the algorithms targeted by link
spam, we will adopt the following model. For a spam-
mer, there are three types of pages on the Web:

1. Inaccessible pages are those that a spammer can-
not modify. These are the pages out of reach;
the spammer cannot influence their outgoing links.
(Note that a spammer can still point to inaccessi-
ble pages.)

2. Accessible pages are maintained by others (pre-
sumably not affiliated with the spammer), but can
still be modified in a limited way by a spammer.
For example, a spammer may be able to post a
comment to a blog entry, and that comment may
contain a link to a spam site. As infiltrating ac-
cessible pages is usually not straightforward, let
us say that a spammer has a limited budget of m
accessible pages. For simplicity, we assume that
at most one outgoing link can be added to each
accessible page.

3. Own pages are maintained by the spammer, who
thus has full control over their contents. We call

the group of own pages a spam farm Σ. A spam-
mer’s goal is to boost the importance of one or
more of his or her own pages. For simplicity, say
there is a single target page t. There is a certain
maintenance cost (domain registration, web host-
ing) associated with a spammer’s own pages, so we
can assume that a spammer has a limited budget
of n such pages, not including the target page.

With this model in mind, we discuss the two well-
known algorithms used to compute importance scores
based on link information.

HITS. The original HITS algorithm was introduced
in [7] to rank pages on a specific topic. It is more com-
mon, however, to use the algorithm on all pages on the
Web to assigns global hub and authority scores to each
page. According to the circular definition of HITS, im-
portant hub pages are those that point to many impor-
tant authority pages, while important authority pages
are those pointed to by many hubs. A search engine
that uses the HITS algorithm to rank pages returns as
query result a blending of the pages with the highest
hub and authority scores.

Hub scores can be easily spammed by adding outgo-
ing links to a large number of well known, reputable
pages, such as www.cnn.com or www.mit.edu. Thus, a
spammer should add many outgoing links to the target
page t to increase its hub score.

Obtaining a high authority score is more compli-
cated, as it implies having many incoming links from
presumably important hubs. A spammer could boost
the hub scores of his n pages (once again, by adding
many outgoing links to them) and then make those
pages point to the target. Links from important acces-
sible hubs could increase the target’s authority score
even further. Therefore, the rule here is “the more
the better”: within the limitations of the budget, the
spammer should have all own and accessible pages
point to the target. Non-target own pages should also
point to as many other (known important) authorities
as possible.

PageRank. PageRank, as described in [10], uses
incoming link information to assign global importance
scores to all pages on the Web. It assumes that the
number of incoming links to a page is related to that
page’s popularity among average web users (people
would point to pages that they find important). The
intuition behind the algorithm is that a web page is
important if several other important web pages point
to it. Correspondingly, PageRank is based on a mu-
tual reinforcement between pages: the importance of a
certain page influences and is being influenced by the
importance of some other pages.

A recent analysis of the algorithm [2] showed that
the total PageRank score PR(Γ) of a group Γ of pages
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Figure 2: An optimal link structure for PageRank.

(at the extreme, a single page) depends on four factors:

PR(Γ) = PRstatic(Γ)+PRin(Γ)−PRout(Γ)−PRsink(Γ),

where PRstatic is the score component due to the static
score distribution (random jump); PRin is the score re-
ceived through the incoming links from external pages;
PRout is the score leaving Γ through the outgoing links
to external pages; and PRsink is the score loss due to
those pages within the group that have no outgoing
links.

For our spam farm model, the previous formula leads
to a class of optimal link structures that were proved
to maximize the score of the target page [4]. One such
optimal structure is presented in Figure 2; it has the
arguably desirable properties that (1) it makes all own
pages reachable from the accessible ones (so that they
could be crawled by a search engine), and (2) it does
this using a minimal number of links. We can observe
how the presented structure maximizes the total Page-
Rank score of the spam farm, and of page t in partic-
ular:

1. All available n own pages are part of the spam
farm, maximizing the static score PRstatic(Σ).

2. All m accessible pages point to the spam farm,
maximizing the incoming score PRin(Σ).

3. Links pointing outside the spam farm are sup-
pressed, making PRout(Σ) equal to zero.

4. All pages within the farm have some outgoing
links, rendering a zero PRsink(Σ) score component.

Within the spam farm, the the score of page t is
maximal because:

1. All accessible and own pages point directly to the
target, maximizing its incoming score PRin(t).

2. The target points to all other own pages. Without
such links, t would had lost a significant part of

its score (PRsink(t) > 0), and the own pages would
had been unreachable from outside the spam farm.
Note that it would not be wise to add links from
the target to pages outside the farm, as those
would decrease the total PageRank of the spam
farm.

As we can see in Figure 2, the “more is better” rule
also applies to PageRank. It is true that setting up
sophisticated link structures within a spam farm does
not improve the ranking of the target page. However, a
spammer can achieve high PageRank by accumulating
many incoming links from accessible pages, and/or by
creating large spam farms with all the pages pointing
to the target. The corresponding spamming techniques
are presented next.

3.2.2 Techniques

We group link spamming techniques based on whether
they add numerous outgoing links to popular pages or
they gather many incoming links to a single target page
or group of pages.

Outgoing links. A spammer might manually add a
number of outgoing links to well-known pages, hoping
to increase the page’s hub score. At the same time,
the most wide-spread method for creating a massive
number of outgoing links is directory cloning: One can
find on the World Wide Web a number of directory
sites, some larger and better known (e.g., the DMOZ
Open Directory, dmoz.org, or the Yahoo! directory,
dir.yahoo.com), some others smaller and less famous
(e.g., the Librarian’s Index to the Internet, lii.org).
These directories organize web content around topics
and subtopics, and list relevant sites for each. Spam-
mers then often simply replicate some or all of the
pages of a directory, and thus create massive outgoing-
link structures quickly.

Incoming links. In order to accumulate a num-
ber of incoming links to a single target page or set of
pages, a spammer might adopt some of the following
strategies:

• Create a honey pot, a set of pages that provide
some useful resource (e.g., copies of some Unix
documentation pages), but that also have (hid-
den) links to the target spam page(s). The honey
pot then attracts people to point to it, boost-
ing indirectly the ranking of the target page(s).
Please note that the previously mentioned direc-
tory clones could act as honey pots.

• Infiltrate a web directory. Several web directories
allow webmasters to post links to their sites under
some topic in the directory. It might happen that
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the editors of such directories do not control and
verify link additions strictly, or get misled by a
skilled spammer. In these instances, spammers
may be able to add to directory pages links that
point to their target pages. As directories tend
to have both high PageRank and hub scores, this
spamming technique is useful in boosting both the
PageRank and authority scores of target pages.

• Post links on blogs, unmoderated message boards,
guest books, or wikis. As mentioned earlier in Sec-
tion 3.2.1, spammers may include URLs to their
spam pages as part of the seemingly innocent
comments/messages they post. Without an edi-
tor or a moderator to oversee all submitted com-
ments/messages, pages of the blog, message board,
or guest book end up linking to spam. Even if
there is an editor or a moderator, it could be non-
trivial to detect spam comments/messages as they
might employ some of the hiding techniques pre-
sented in the next section. Here is a simple ex-
ample of a spam blog comment that features both
link and anchor text spamming:

Nice story. Read about my <a href=“http://
bestcasinoonlinever.com”>Las Vegas casino</a>
trip.

It is important to mention that blog comment
spamming is gaining popularity, and it is not only
a problem for search engines, but also has a strong
direct influences on the large community of mil-
lions of bloggers: for the web users with their own
blogs, comment spamming represents a nuisance
similar to email spamming. Recently, a num-
ber of tools and initiatives were launched to curb
comment spamming. For instance, some bloggers
maintain lists of domain names that appear in
spam URLs [8].

• Participate in link exchange. Often times, a group
of spammers set up a link exchange structure, so
that their sites point to each other.

• Buy expired domains. When a domain names ex-
pires, the URLs on various other web sites that
point to pages within the expired domain linger
on for some time. Some spammers buy expired
domains and populate them with spam that takes
advantage of the false relevance/importance con-
veyed by the pool of old links.

• Create own spam farm. These days spammers can
control a large number of sites and create arbi-
trary link structures that would boost the ranking
of some target pages. While this approach was
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Figure 3: Spam hiding techniques.

prohibitively expensive a few years ago, today it
is very common as the costs of domain registration
and web hosting have declined dramatically.

4 Hiding Techniques

It is usual for spammers to conceal the telltale signs
(e.g., repeated terms, long lists of links) of their activ-
ities. They use a number of techniques to hide their
abuse from regular web users visiting spam pages, or
from the editors at search engine companies who try to
identify spam instances. This section offers an overview
of the most common spam hiding techniques, also sum-
marized in Figure 3.

4.1 Content Hiding

Spam terms or links on a page can be made invisible
when the browser renders the page. One common tech-
nique is using appropriate color schemes: terms in the
body of an HTML document are not visible if they are
displayed in the same color as the background. Color
schemes can be defined either in the HTML document
or in an attached cascading style sheet (CSS). We show
a simple HTML example next:

<body background=“white”>
<font color=“white”>hidden text</font>
. . .

</body>

In a similar fashion, spam links can be hidden by
avoiding anchor text. Instead, spammers often create
tiny, 1×1-pixel anchor images that are either transpar-
ent or background-colored:

<a href=“target.html”><img src=“tinyimg.gif”></a>

A spammer can also use scripts to hide some of the
visual elements on the page, for instance, by setting
the visible HTML style attribute to false.
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4.2 Cloaking

If spammers can clearly identify web crawler clients,
they can adopt the following strategy, called cloak-
ing: given a URL, spam web servers return one specific
HTML document to a regular web browser, while they
return a different document to a web crawler. This way,
spammers can present the ultimately intended content
to the web users (without traces of spam on the page),
and, at the same time, send a spammed document to
the search engine for indexing.

The identification of web crawlers can be done in
two ways. On one hand, some spammers maintain a
list of IP addresses used by search engines, and iden-
tify web crawlers based on their matching IPs. On the
other hand, a web server can identify the application
requesting a document based on the user-agent field in
the HTTP request message. For instance, in the follow-
ing simple HTTP request message the user-agent name
is that one used by the Microsoft Internet Explorer 6
browser:

GET /db pages/members.html HTTP/1.0
Host: www-db.stanford.edu
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Win-
dows NT 5.1)

The user-agent names are not strictly standardized,
and it is really up to the requesting application what
to include in the corresponding message field. Never-
theless, search engine crawlers identify themselves by
a name distinct from the ones used by traditional web
browser applications. This is done in order to allow
webmasters to block access to some of the contents,
control network traffic parameters, or even perform
some well-intended, legitimate optimizations. For in-
stance, a few sites serve to search engines versions of
their pages that are free from navigational links, ad-
vertisements, and other visual elements related to the
presentation, but not to the content. This kind of ac-
tivity might even be welcome by some of the search
engines, as it helps indexing the useful information.

4.3 Redirection

Another way of hiding the spam content on a page is by
automatically redirecting the browser to another URL
as soon as the page is loaded. This way the page still
gets indexed by the search engine, but the user will not
ever see it—pages with redirection act as intermediates
(or proxies, doorways) for the ultimate targets, which
spammers try to serve to a user reaching their sites
through search engines.

Redirection can be achieved in a number of ways.
A simple approach is to take advantage of the refresh
meta tag in the header of an HTML document. By

setting the refresh time to zero and the refresh URL to
the target page, spammers can achieve redirection as
soon as the page gets loaded into the browser:

<meta http-equiv=“refresh” content=
“0;url=target.html”>

While the previous approach is not hard to imple-
ment, search engines can easily identify such redirec-
tion attempts by parsing the meta tags. More sophis-
ticated spammers achieve redirection as part of some
script on the page, as scripts are not executed by the
crawlers:

<script language=“javascript”><!- -
location.replace(“target.html”)

--></script>

5 Statistics

While we have a good understanding of spamming
techniques, the publicly available statistical data de-
scribing the amount and nature of web spam is very
limited. In this section we review some of what is
known.

Two papers discuss the prevalence of web spam, pre-
senting results from three experiments. Fetterly et al.
[3] manually evaluated sample pages from two different
data sets.

The first data set (DS1) represented 150 million
URLs that were crawled repeatedly, once every week
over a period of 11 weeks, from November 2002 to Feb-
ruary 2003. The authors retained 0.1% of all crawled
pages, chosen based on a hash of the URLs. A man-
ual inspection of 751 pages sampled from the set of re-
tained pages yielded 61 spam pages, indicating a preva-
lence of 8.1% spam in the data set, with a confidence
interval of 1.95% at 95% confidence.

The second data set (DS2) was the result of a sin-
gle breadth-first search started at the Yahoo! home
page, conducted between July and September 2002.
The search covered about 429 million pages. During
a later manual evaluation, from a random sample of
1,000 URLs, the authors were able to download 535
pages, of which 37 (6.9%) were spam.

A third, independent set of statistics is provided by
Gyöngyi et al. [5]. In this case, the authors used the
complete set of pages crawled and indexed by the Al-
taVista search engine as of August 2003. The several
billion web pages were grouped into approximately 31
million web sites (DS3), each corresponding roughly to
an individual web host. Instead of random sampling,
the following strategy was adopted: the authors seg-
mented the list of sites in decreasing PageRank order
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into 20 buckets. Each of the buckets contained a dif-
ferent number of sites, with PageRank scores summing
up to 5 percent of the total PageRank. Accordingly,
the first bucket contained the 86 sites with the highest
PageRank scores, bucket 2 the next 665, while the last
bucket contained 5 million sites that were assigned the
lowest PageRank scores. The upper part of Figure 4
shows the size of each bucket on a logarithmic scale.

First, an initial sample of 1000 sites was constructed
by selecting 50 sites at random from each bucket.
Then, the sample was reduced to 748 existing sites that
could be categorized clearly. A manual inspection dis-
covered that 135 (18%) of these sites were spam. The
lower part of Figure 4 presents the fraction of spam in
each bucket. It is interesting to note that almost 20%
of the second PageRank bucket is spam, indicating that
some sophisticated spammers can achieve high impor-
tance scores. Also, note that there is a high preva-
lence of spam (almost 50%) in buckets 9 and 10. This
fact seems to indicate that “average” spammers can
generate a significant amount of spam with mid-range
logarithmic PageRank.

Table 1 summarizes the results from the three pre-
sented experiments. The differences between the re-
ported prevalence figures could be due to an interplay
of several factors:

• The crawls were performed at different times. It
is possible that the amount of spam increased over
time.

• Different crawling strategies were used.

• There could be a difference between the fraction
of sites that are spam and the fraction of pages
that are spam. In other words, it could be the
case that the average number of pages per site is
different for spam and non-spam sites.

• Classification of spam could be subjective; indi-
viduals may have broader or narrower definition
of what constitutes spam.

Despite the discrepancies, we can probably safely esti-
mate that 10-15% of the content on the Web is spam.

As the previous discussion illustrates, our statistical
knowledge of web spam is sparse. It would be of inter-
est to have data not only on what fraction of pages or
sites is spam, but also on the relative sizes (as measured
in bytes) of spam and non-spam on the Web. This
would help us estimate what fraction of a search en-
gine’s resources (disk space, crawling/indexing/query
processing time) is wasted on spam. Another im-
portant question is how spam evolves over time. Fi-
nally, we do not yet know much about the relative fre-
quencies of different spamming techniques, and the co-
occurrence patterns between them. It is suspected that
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Figure 4: Bucket sizes and spam/bucket for DS3.

currently almost all spammers use link spamming, usu-
ally combined with anchor text spamming, but there
are no published research results supporting this hy-
pothesis. It is our hope that future research in the
field will provide some of the answers.

6 Conclusions

In this paper we presented a variety of commonly used
web spamming techniques, and organized them into a
taxonomy. We argue that such a structured discussion
of the subject is important to raise the awareness of
the research community. Our spam taxonomy natu-
rally leads to a similar taxonomy of countermeasures.
Correspondingly, we outline next the two approaches
that a search engine can adopt in combating spam.

On one hand, it is possible to address each of the
boosting and hiding technique presented in Sections 3
and 4 separately. Accordingly, one could:

1. Identify instances of spam, i.e., find pages that
contain specific types of spam, and stop crawling
and/or indexing such pages. Search engines usu-
ally take advantage of a group of automatic or
semi-automatic, proprietary spam detection algo-
rithms and the expertise of human editors to pin-
point and remove spam pages from their indexes.
For instance, the techniques presented in [3] could
be used to identify some of the spam farms with
machine-generated structure/content.

2. Prevent spamming, that is, making specific spam-
ming techniques impossible to use. For instance,
a search engine’s crawler could identify itself as a
regular web browser application in order to avoid
cloaking.

3. Counterbalance the effect of spamming. Today’s
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Data set Crawl date Data set size Sample size Spam

DS1 11/02 – 02/03 150 million pages 751 pages 8.1% of pages
DS2 07/02 – 09/02 429 million pages 535 pages 6.9% of pages
DS3 08/03 31 million sites 748 sites 18% of sites

Table 1: Spam prevalence statistics.

search engines use variations of the fundamen-
tal ranking methods (discussed in Sections 3.1.1
and 3.2.1) that feature some degree of spam re-
silience.

On the other hand, it is also possible to address the
problem of spamming as a whole, despite the differ-
ences among individual spamming techniques. This
approach relies on the identification of some common
features of spam pages. For instance, the spam detec-
tion methods presented in [5] take advantage of the
approximate isolation of reputable, non-spam pages:
reputable web pages seldom point to spam. Thus, ade-
quate link analysis algorithms can be used to separate
reputable pages from any form of spam, without deal-
ing with each spamming technique individually.
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Abstract

This paper investigates the influence of different page
features on the ranking of search engine results. We use
Google (via its API) as our testbed and analyze the re-
sult rankings for several queries of different categories
using statistical methods. We reformulate the problem
of learning the underlying, hidden scores as a binary
classification problem. To this problem we then apply
both linear and non-linear methods. In all cases, we
split the data into a training set and a test set to ob-
tain a meaningful, unbiased estimator for the quality of
our predictor. Although our results clearly show that
the scoring function cannot be approximated well using
only the observed features, we do obtain many interest-
ing insights along the way and discuss ways of obtain-
ing a better estimate and main limitations in trying to
do so.

1 Introduction

In the age of digitalized information the world is relying
more and more on web search engines when it comes
to satisfying an information need. When given a new
task, 88% of the time internet users start at such a search
engine [11]. Part of the search engines’ success might
be due to their simplicity: you enter some words and
the results are then output in form of a ranked list, in
which the search engine estimates the relevance of each
indexed website to your query.

Today Google claims to have indexed 8,058,044,651

web pages1. Even with this sheer enormous volume of
information it is relatively “easy” to find a list of pages
containing given query terms. The difficult part is then
to select, from the possible myriad of matching pages,
the “best” 10 or 20 according to some computable qual-
ity measure which, ideally, closely resembles the user’s
notion of relevance. The ability of any search engine to
closely match this human notion has a major impact on
its success.

Users are usually satisfied when the presented rank-
ing leads to an answer to their queries. However, they
normally do not questionwhythey were presented with
exactly this ranking, and how the search engine inferred
which website is most relevant to their particular re-
quest. This situation is usually different when querying
for their own name(s), as one might suddenly wonder
why her personal homepage is (not) ranked highest.

E-commerce websites, on the other hand, have a
much more tangible interest in the exact ranking pro-
cess, as a high ranking in a popular search engine for
a certain product query leads to more web traffic and
ultimately translates into higher sales. Thus, “Search
Engine Optimization” (SEO) has long been recognized
as a lucrative business on its own.

Although the exact details are not publicly known, it
is generally assumed that each search engine assigns a
score to each result that satisfies a Boolean search crite-
ria and then sorts the results according to this score. Its

1Interestingly, this number used to remain just below 232 for at
least 9 months, indicating a 32-bit hardware threshold of the previous
implementation. Just on November 11th, 2004 the index size jumped
to about 8 thousand million pages, possibly in response to the launch
of the MSN search engine.
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value depends on the value of certainfeaturesof each
webpage in the result set, e.g. its PageRank score, the
text similarity between the query and the document, etc.

In this paper we approximate the underlying ranking
function by analyzing query results. First, we obtain
for each query result numerical values for a large num-
ber of observable features, thus converting each docu-
ment into a vector. We then train our models on the dif-
ference vectors between documents at different ranks.
By labeling these vectors with “+” for the direction to-
wards the top and “–” otherwise, we reformulate our
problem as a binary classification one: given a pair of
documents, we try to predict which one is ranked above
the other. This gives a partial order of the vectors, i.e.,
documents. Therefore, the binary classification trees we
used do not give a complete order, i.e., a full ranking.
On the other hand, for the models with linear decision
boundaries, namely logistic regression and support vec-
tor machines, the normal vector to this linear boundary
gives the trendline of the direction of an improvement
in the underlying scores and the scalar product with this
vector gives a full ranking. Although our methodology
can be applied to any search engine, we chose Google as
it is nowadays the most widely used [3]. More specif-
ically, we used the Google API [5] to retrieve search
results.

In section 2 we discuss previous work on this sub-
ject. We then describe our statistical methodology for
estimating the ranking function in section 3. Section
4 briefly presents the components of the system. Sec-
tion 5 gives our experimental results. Possible improve-
ments and shortcomings of our approach are discussed
in section 6.

2 Related Work

Pringle, Allison and Dowe [13] addressed both the
problem of determining when certain pages are re-
trieved at all, and that of explaining how a given ranking
was obtained. For the first problem they used decision
trees, while the second was tackled using linear regres-
sion, exploiting the explicit scores returned by InfoSeek
[8]. Both of these approaches are different from ours as
is the way they obtained their data, namely by creating
artificial websites and not using real web pages as we
are. Furthermore, they did not use a separate test data
set to obtain an unbiased estimator of the quality of their
predictor.

Sedigh and Roudaki [15] presented a simple linear

regression model that approximates the dynamics gov-
erning the behavior of Google where, given some ob-
servable features, they try to predict theabsoluterank of
a webpage. This has, among other things, the disadvan-
tage that once documents are added such a prediction
can no longer hold, as you trained on absolute ranks,
which depend on the knowledge of all documents in the
set. Our approach has the advantage that the universe of
documents does not need to be known. Especially for
their methodology it would have been interesting to see
the performance on a separate test data set that was not
used for training.

Joachims [9] presented an approach to automatically
optimize the retrieval quality of search engines using
clickthrough data. He rephrased the problem of learn-
ing a linear ranking as one of binary classification with
linear decision boundaries and then applied Support
Vector Machines (SVM) to this inference problem. We
use the same reformulation, though we do not restrict
ourselves to SVMs.

There is also a substantial amount of literature on var-
ious theoretical aspects of learning a ranking function,
see, e.g., [2, 4]. As our focus was on obtaining anin-
terpretablemodel for the ranking function, we limited
ourselves to using logistic regression, SVMs and binary
classification trees.

3 Estimating a Ranking Function

Our goal is to obtain an estimation functionf for the
scoring function of a search engine, and then to com-
pare our predicted rankings with the actual rankings of
this search engine.

3.1 Data set

As it is unlikely that a large search engine would em-
ploy the same ranking criterion for all types of queries,
we used several sets of homogeneous queries, all deal-
ing with a certain topic, assuming that they are ranked
with the same function.

Table 1 shows our queries dataset, which is divided
into four categories: Art, States, Spam and Multiple.
Arts is a list of artists and States is a list of US States.
For both of these categories the queries consisted of a
single term. The Spam category contains phrases for
which one can expect many “search engine optimized”
web pages. If a search engine wants to retrieve any high
quality pages for such queries it must use an elaborate
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Table 1: Table of training, validation and test data clas-
sified by the query data set. Validation data is used for
feature selection and tree pruning. The test data is only
used to get an unbiased estimate of the generalization
error.

Dataset Type Query terms

Arts Training Albertinelli, Bacchiacca, Botticelli,
Botticini, Foschi, Franciabigio,
Leonardo

Validation Michelangelo, Picasso

Test Pordenone, Rosselli, Verrocchio

States Training Arizona, Arkansas, Connecticut,
Idaho, Illinois, Iowa, Kansas

Validation Michigan, Nevada

Test Ohio, Oregon, Utah

Spam Training buy cds, buy dvds, cheap software,
download movies, download music,
dvd player, free movies

Validation free mp3, free music

Test free ringtones, music videos, soft-
ware downloads

Multiple Training anova bootstrap feature missing
principal squared, analysis frequent
likelihood misclassification pruning
statistical, adaptive classification
gating linear model proximity sub-
set, association generalization local
naive regularization test, analysis
cubic gradient margin optimal risk
support, automatic decision valida-
tion overfitting smoother adaptive,
activation discriminant hyperplane
loss single validation

Validation basis eigenvalue margin maximum
local support, basis early informa-
tion adaboost margin soft

Test logistic bias entropy markov piece-
wise loss, feature complexity gaus-
sian logistic normal ridge training,
discriminant gaussian link multiple
radial supervised

ranking function. Finally, the Multiple category con-
sists of queries with 6 terms from the domain of statis-
tical inference.

One of our main contributions lies in the statistical
rigor with which we approach the problem. Thus, for
example, to obtain statistically meaningful results we
partition the 12 queries for a given category into three
disjoint sets:

Training Set (7 queries): We use this set of queries to
learn a linear scoring function or a decision tree.
The data that we actually trained on consists of dif-
ference vectors corresponding to different feature
vectors. See section 3.2 for a detailed explanation.

Validation Set (2 queries): The validation set is used
for greedy stepwise forward feature selection and
for pruning the decision tree. In cases where fea-
tures were selected directly, this set was merged
with the training one. Tree pruning is explained in
section 3.5.

Test Set (3 queries): To estimate the generalization er-
ror of our ranking function, we compare our pre-
dicted rankings with the observed rankings for
these queries. Simply testing the performance on
the training set itself leads to an overly optimistic
estimate of the quality of the model. Without the
use of such a set, we could have obtained wrong,
but seemingly better, results due to overfitting.

3.2 Reformulation as binary classification
problem

Let q be a query, andu,v be feature vector of pages,
where each entry in the vector corresponds to a particu-
lar feature, e.g., how often a query term appears on the
page or whether or not it appears in the URL (the list of
features we considered is provided in section 4.2).

Let u <q v represent the ordering returned by the
ranking function of a search engine for the given query,
sou <q v if and only if the page with feature vectoru is
ranked below the one with feature vectorv in the search
engine’s results to queryq. In the following, we drop
the subscriptq.

Ultimately, we want to find a real-valued functionf
such thatf (u) < f (v) wheneveru < v. If we assume
that f is linear, then there exists a vectorw such that
f (u) = w ·u, using· to denote the scalar product.
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Then,

f (u) < f (v)
⇔ w ·u < w ·v
⇔ w · (v−u) > 0 .

So the problem of finding a linear functionf is equiv-
alent to finding a vectorw such that(v−u) ·w > 0 if and
only if v is ranked aboveu. Geometrically speaking,w
points in the direction of the increase in score value and
the vectors are sorted according to the length of their
projection onto this direction. If we label the difference
vector(v−u) “x” if v is ranked aboveu and “–” oth-
erwise we see that our problem is equivalent to finding
a hyperplane with normalw which perfectly separates
the “+” and the “–” training points.

Conversely, if we have a binary classification scheme
which uses a linear decision boundary through the ori-
gin, we can use the normal vector to this plane as ourw
which defines the functionf . As our data is symmetric
about the origin by construction –because each compar-
ison between two different ranks leads to two vectors
pointing in opposite directions– many schemes will sat-
isfy the property. Note that the real data will not per-
fectly follow a linear function in the observed features
as we might not know all the underlying features which
are actually used and because the function is most prob-
ably non-linear. Thus, our classification scheme needs
to cope with misclassified points.

In the following we briefly introduce two classifica-
tion schemes with linear decision boundaries, logistic
regression models and support vector machines, and
also discuss the use of binary classification trees, which
are highly non-linear. See [6] for a good introduction
to the area of statistical learning algorithms. We will
write x for an either labeled or unlabeled difference vec-
tor v−u and consider the task of classifying unlabeled
points into one of the two classes “+” or “–”.

It is worth noting that we not only train these lin-
ear models on the original features but we also ex-
perimented with including quadratic terms of features
which, in the original feature space, leading to non-
linear decision boundaries which can capture more sub-
tle relations but are also more prone to overfitting. See
section 3.7 for details on the issue of feature selection
and transformations.

3.3 Logistic Regression

Logistic regression models the posterior probabilities of
the classes, i.e., the probabilities of belonging to a cer-
tain class given the coordinatesx, via linear functions
in the coordinate vector. In the case of only two classes
“–” and “+” the model has the form

log
P(class = “+”|X = x)
P(class = “–”|X = x)

= β0 +w ·x (1)

As it can be seen easily, thisgives rise to linear de-
cision boundaries, on whichP(class = “+”|X = x) =
P(class = “–”|X = x). Due to the symmetry in our data
the offsetβ0 will be zero and the vectorw gives the
desired weights of the factors involved, indicating the
direction from low ranks to high ranks. We refer the
reader to [6] for a full description of the training algo-
rithm. For our experiments we used Matlab’s imple-
mentation ofglmfit (generalized linear model) with a
binomial distribution to compute the logistic regression
models.

3.4 Support Vector Machines

Support Vector Machines typically use linear decision
boundaries in atransformedfeature space. The idea is
that often in this higher, or even infinitely, dimensional
space the data becomes separable by hyperplanes. As
the mapping does not need to be computed implicitly,
but only inner products defining the kernel need to be
known, this approach becomes feasible. However, as
we want to be able to ultimately use the related normal
vector for ranking in the original feature space we only
use support vector machines with linear kernels which
correspond to hyperplanes in this space. For our ex-
periments we used theSMV light [10] implementation
with the default setting for the parameterC which is the
average of(x ·x)−1. This parameter allows trading-off
margin size against training error.

3.5 Binary Classification Trees

The function f that is used in practice by a real search
engine might not be linear for a variety of reasons. One
is that, for efficiency reasons, a search engine might use
several layers of indices, where the first layer is able
to answer most queries and only if this level fails the
query is send to subsequent levels. Such a behavior and
other simple non-linear behaviors, as using thresholds
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for certain features, can at least partly be captured by
decision trees.

A classification tree is built through a process known
as binary recursive partitioning. The algorithm itera-
tively breaks up the records into two parts, examining
one variable at a time and splitting the records on the
basis of a dividing line in that variable. The process
continues until no more useful splits can be found. To-
ward the end, idiosyncrasies of training records at a par-
ticular node display patterns that are peculiar only to
those records. These patterns can become meaningless
and often harmful for predicting unknown labels. Prun-
ing the tree is the process of removing such leaves and
branches to shrink the tree to a smaller set of crucial
splits which leads to a better performance on general
data. For our experiments we used Matlab’s implemen-
tation oftreefit andtreeprune.

3.6 Selecting Difference Vectors

In most cases we trained onall possible pairs, which
for n results aren(n− 1) pairs, each pair resulting in
two difference vectors with opposite labels. This se-
lection of pairs was used to train both the logistic re-
gression models and the SVM classifiers. To reduce
the computation time for the classification trees we only
trained on “shifted pairs” of the form (1,bn/2c+1), (2,
bn/2c+ 2), ... (bn/2c,n), where again each such pair
gives rise to two difference vectors. For this subset of
pairs there are thus 2×dn/2e points to classify. Due to
the large constant difference between considered ranks
these pairs are expected to be rather robust with re-
spect to noise due to only minor differences between
consecutive ranks. However, training the linear models
with this subset made hardly any difference compared
to training them on all pairs. So we conjecture that more
pairs would not give significantly different classifica-
tion trees.

3.7 Feature Selection and Transforma-
tions

The importance of the individual features for each of the
four categories is given in Table 2. This table gives the
precision which can be obtained on the entire data set
(for each category, downloading the top 100 results per
query) if we only ranked according to a single feature.

We experimented with various strategies of select-
ing subsets and functions of the original features as
input values for the data mining algorithms. Subsets

Table 2: Table of the precision values obtained using
only individual features to predict the ranking –feature
abbreviations are explained in section 4.2. The top three
features for each query set are shown in bold, and a (-)
indicates a negative correlation.

Feature Arts States Spam Multiple
NBOD (-)53.8% 54.4% 51.1% 50.9%
FNEN (-)59.4% 53.5% 51.6% (-)59.8%
RFFT 52.1% (-)54.3% 50.0% 53.9%
ATLE (-)54.2% 54.0% 50.0% 54.4%
FATT 56.2% 50.3% 53.0% 51.8%
AMQT 55.4% 50.5% 52.1% 56.9%

SIMT (N) 56.5% (-)52.0% 52.7% 59.0%
SIMT 55.4% (-)50.9% 52.6% 69.7%

TMKY (N) 51.4% 51.4% 54.5% 50.0%
TMKY 53.0% 51.4% 55.1% 50.0%
ILNK 58.0% 66.3% 57.0% 53.9%
PRNK 58.7% 60.6% 55.0% 57.2%
TDIR 52.3% 53.5% 54.3% 51.9%

of features were selected in two ways. Firstly, in a
greedy stepwise forward manner, always adding the
feature which gave the best improvement on the val-
idation data set. This strategy did not give better re-
sults than the other approaches, and thus we omit its
results. Secondly, we used thep strongest features for
p∈ 1,3,5,10.

Furthermore, we did not only use the raw features
but also experimented with non-linear combinations of
them. Forp ∈ 3,5,10 we included all the quadratic
terms of the selected features and trained a logistic re-
gression model on this transformed input data. Thus,
when working with featuresx1, x2 andx3 we also in-
clude all quadratic terms such asx1× x3 andx2

2. If we
havep basic features then we getp+ p(p−1)/2 new
features, including the linear terms. For no data set this
gave better results on the test set than working with only
the untransformed linear terms.

Lastly, we tried monotone transformations such as
log(1+ x), 1/(1+ x) and 1− e−x on features such as
the number of inlinks, the document length or the num-
ber of term occurrences which follow a power law. This
only lead to slightly worse results which are not in-
cluded here.

3.8 Normalization

Generally, the outcome of a statistical inference algo-
rithm can depend heavily on the use of data normaliza-
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tion. This is not the case in our setting. Firstly, it should
be clear that multiplying the value of any featurei in
all data points by a constantγ simply rescales the fi-
nal scoring weightbi by 1/γ. More interestingly, also
rescaling the individual difference vectorsx has almost
no influence. The sign ofx ·w does not depend on the
length ofx, thus any linear scheme working only with
the numberof misclassified training points will yield
the same result. The only property that does change is
the distance from the separating hyperplane which, for
instance, influences the posterior probabilities in logis-
tic regression. However, experiments showed that the
overall results were almost identical, also for the classi-
fication trees, with very slightly better results obtained
by training on the unnormalized difference vectors. All
experimental numbers refer to this unnormalized set-
ting.

4 System Architecture

To extract the feature sets used in our analysis we built a
system with three components: a downloader, a parser,
and an analyzer.

Downloader: software that executes a query and
downloads the returned pages using the data set
queries

Feature Extractor: software that computes the fea-
tures of the pages downloaded.

Analyzer: software that analyzes the features of the re-
turned pages and estimates a function using nu-
merical methods.

4.1 Downloader

The downloader receives as an input a data set of
queries (see Table 1). For each such query it does the
following:

1. Submits the query to the search engine, i.e. to the
Google API in our case, downloads all URLsui

obtained as result set, and checks whether they or
their domain are contained in the Open Directory
[12]. This is another feature which might influ-
ence the ranking function of a search engine, and
thus we included it in our study. For simplicity
and to avoid bias based on the file type, we limited
ourselves to HTML pages.

2. For each ui , it then sends a query to ob-
tain the number of inlinks, using Google API’s
”link:www.abc.om” syntax, as well as the top 5
in-linking pages. We had to limit ourselves to 5 in-
links because of the reduced access offered by the
Google API to the search service, i.e., only 1000
queries of 10 answers per day, per user.

3. Finally, it downloads these 5 pages to further ana-
lyze their anchor text.

Also, for each individual query term, the “Down-
loader” submits a single query and outputs the estimate
number of results. This will be later used to compute the
inverse document frequency value for the tf-idf similar-
ities [14].

4.2 Feature Extractor

The Feature Extractor receives as an input the down-
loaded pages. Pages are converted to XML usingtidy,
to be able to use the DOM (document object model)
API for accessing different parts of the document. This
is useful for checking if query terms appear in some
special formatting element such as boldface.

We divide the list of the page features that are ex-
tracted by the parser into: content, formatting, link and
metadata. Where sensible we included both raw and
normalized versions of features, e.g. counting both the
absolute number of query term occurrences in the ti-
tle and the percentage of query terms appearing there.
Here is the complete list of features we extracted. An
(N) after a feature indicates that we also considered a
normalized/averaged version of this feature.

Content features, query independent:

• DIFT Number of different terms of the document

• FNEN Fraction of terms in the documents which
can not be found in an English dictionary

• NBOD Number of bytes of the original document

• NBTO Number of bytes of text in the original docu-
ment

• RFFT Relative frequency of the more frequent
term, i.e.: term frequency. If a document has 3
words and the most frequent word repeats 2 times,
then this is 2/3

• ATLE Average term length

Content features, query dependent:
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• TFQT Term frequency of query term = Number of
occurrences of the query term (averaged over the
different query terms) (N)

• SIMT Similarity of the term to the document, in
terms of vector space model. We compute it us-
ing the frequency of terms in documents and the
inverse document frequency of each term. (N)

• APQT Average position of the query terms in the
document = 1 at the beginning, 0 if at the end and
in-between in the middle.

• AMQT Average matches of the query terms

• CTQW Closeness of terms in the query in the web-
page (distance in number of terms , smallest win-
dows containing all of them)

• FATT Anchor text term frequency

Formatting features, query-dependent. We used the
number of “special” occurrences divided by the total
number of occurrences of query terms:

• THTM Term in a special document zone including
HTML tags: B, I, U, FONT, BIG, H1-H6, A, LI and
TITLE (N)

• TATV Term as an attribute value (ele-
ment/@attribute): IMG/@ALT, IMG/@TITLE
(N)

• TMKY Term in the meta keywords or description
(N)

• TCLP Term in capitals in the page (N)

Link features, query-independent:

• ILNK Number of pages linking to a page, in-degree
approximated using Google APIlink: queries

• PRNK PageRank of the page, or the approximation
of the PageRank in a 0-10 scale obtained from
Google’s toolbar.

• OLNK Number of out-links in the page

• FOLN Fraction of out-links to external Web sites

Metadata features:

• TURL Term is in the page’s URL or not.

• TDIR Term is listed in a web directory or not.

We computed text similaritySIMT of the query and
the returned document.SIMT is computed using a TF-
IDF weighting scheme similar to the one used by Salton
[14], where the similarity is defined using the weight of
each query term. This weight is computed using the
normalized frequency of terms in documents and the
id f inverse document frequency of each term.

4.3 Analyzer

The analyzer is the component is the last stage of our
system and obtains the estimate of the ranking func-
tion. The statistical methods used to obtain this esti-
mate were discussed in section 3. To evaluate the per-
formance we used the following quality measures, each
having its own justification.

1. Precision on all pairs: This measure simply looks
at all possible pairs and the corresponding differ-
ence vectors. The precision is the percentage of
correctly classified vectors, thus corresponding to
a correct “u is ranked abovev” decision. For the
cases where we also have a total ordering, namely
for logistic regression and the SVM model, this
measure can be computed from the Kendall’sτ
measure as: 50%+ 50 * Kendall’sτ %.

2. Precision on “shifted” pairs: See 3.6 for a de-
scription of the “shifted” pairs. Here we only look
at the percentage of correctly classified “shifted”
pairs, which are further apart in the original rank-
ing and their relative order is thus easier to predict.

3. Precision on “top” pairs: Here we only consider
for each query the top result and all its difference
vectors. This number thus gives the percentage of
web pages which are (correctly) predicted to be
ranked below the highest ranking document.

5 Experimental Results

To give a quantitative estimate of the importance of
each individual feature Table 2 gives the precision
values which can be obtained for each category if
one rankedonly according to this individual feature.
However, only features which were among the top 5
strongest for at least one category are included in the
table. A (-) indicates that the feature is negatively cor-
related with the score, i.e., an increase in the feature
value is an indicator for a worse ranking. Note that us-
ing only the strongest feature gives a precision between
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Table 3: Ranking for the query ”discriminant gaus-
sian link multiple radial supervised” from the Multiple
query set when usingonly the SIMT feature. There
were 33 results for this query.

Predicted rank 1 2 3 4 5 6
Google rank 3 5 6 4 13 2

57% for the Spam category and 69.7% for the Multiple
category. Table 3 gives the top 6 results of a query rank-
ing obtained when only using the text similarity (SIMT)
feature. For the Arts category the strongest indicator
of a high ranking was a low fraction of non-English
terms (FNEN), followed by the PageRank (PRNK). For the
States queries the by far strongest such indicator was the
number of in-links (ILNK). For the Spam query this was
also the strongest feature but far less significantly, em-
phasizing that for these queries it would be fatal to put
too much weight on any individual feature. Out of all
four categories it was also this category where the di-
rectory information (TDIR) was most closely linked to
the ranking. Lastly, for the long queries from the Multi-
ple category theSIMT was most closely correlated with
the ranking.

The best performances of any model for each cat-
egory are listed in Table 4. Unfortunately, these are
only marginally better than the baseline values for the
strongest feature in Table 2. Table 4 also lists the details
of the corresponding model. The best pruned trees con-
sisted in almost all cases of a single node correspond-
ing to the strongest individual feature. The fact that the
SVMs did not give an improvement over the baseline
for any model might be due to an inappropriate (default)
choice of the regularization parameterC with which the
authors did not experiment.

It is worthing pointing out that the precision is sig-
nificantly higher for the “shifted” pairs, as can be seen
from the second column of Table 4. These pairs are
further apart and are thus easier to classify as, in gen-
eral, the differences in the relevant features will be more
striking.

6 Shortcomings and Room for Im-
provement

As across all data sets and for all methods and feature
transformations considered the best test precision was
only about 65%, as shown in Table 4 the question arises,
how this could be improved?.

Working with only our collection of features we can,
given the number of different methods and transforma-
tions we tried, safely claim that the answer is a negative
one: it cannot be improved substantially. More features,
such as the domaing ending (.edu, .com, etc.), which
also could have an influence on the ranking, could be
included in the analysis but are unlikely to give a dra-
matic boost. Similarly, much larger training data sets
would probably exhibit only a minor influence; in our
case we were strongly hindered by the query limitations
of the Google API. The real problem seems to lie in the
fact that many crucial features are hidden and cannot be
observed from the outside.

These features which are certainly relevant may in-
clude:

• The query logs, which Google obtains through its
toolbar.

• The age of the incoming links and other informa-
tion related to web link dynamics.

• The rate of change at which a website changes, ob-
tained by repeated web crawls.

• The “true” number of ingoing links, as Google’s
link:www.abc.com only gives a lower bound.

• The “true” PageRank used by Google, as the one
displayed in its toolbar is only an approximation,
and furthermore, seems to be too strongly corre-
lated to the number of in-links [16].

Some of these could, however, theoretically be ob-
tained by a web search engine with a large enough set
of indexed web pages. It might also be worth including
a category with random, artificial terms or numbers, as-
suming that there are still a few hits for these terms. For
such a category at least the use of query logs could be
largely ruled out.

More fundamentally, one can only speculate about
the algorithmic details. It is, e.g., possible that Google
uses (variants of) topic-sensitive PageRank [7] or the
Hilltop algorithm [1], both of which try to overcome the
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Table 4: Best precision achieved on all, “shifted” and “top” pairs. We include the performance on the test data as
well as on the whole data set, including training, validation and test sets.

% all % “shifted” % “top”
pairs correct pairs correct pairs correct

Dataset Test All Test All Test All Best model
Arts 63.7% 61.8% 69.1% 66.4% 47.6% 48.0%Log. regr., strongest 3 features

States 64.6% 66.3% 73.2% 73.8% 97.6% 98.5%Class. tree, only ILINK feature
Spam 62.5% 59.5% 70.5% 62.1% 98.2% 74.8%Log. regr., strongest 10 features

Multiple 67.5% 70.9% 78.1% 81.3% 81.0% 87.0%Log. reg., strongest 3 features

notion of a global, topic-independent measure of qual-
ity, which is inherent to PageRank. For these algorithms
the ranking would no longer be a function of simple
features and a much more elaborate analysis would be
needed.

One should also not forget that any web search en-
gine always has the option of “manually” re-ranking the
results for certain queries. It is known that in certain
countries search engines voluntarily cooperate with the
authorities to exclude certain web pages for legal rea-
sons from their results. Likewise, it is imaginable that
for certain queries pages are pushed up or down because
of financial or other agreements.

The reason for us to choose different query categories
and to try to have “homogeneous” queries within one
category was that we assume that a query is first cate-
gorized and then handled according to the categoriza-
tion. This categorization could involve the scan for cer-
tain keywords indicating a certain topic but it could also
involve inferring information about the type of question
(homepage finding vs. question answering) and the type
of user. A query such as “I’m looking for information
about search engines” containing several stopwords,
might indicate a user less familiar with using search en-
gines and thus less careful in choosing the query terms.
This could imply a boost of query-independent features
for such queries. Likewise, a user using advanced query
syntax who “knows what he is doing” might be better
off with a different ranking scheme. This could be the
reason why the queries “adversarial” and “adversarial
-lairasrevda” (excluding adversarial spelled backwards)
lead to different rankings on Google, although concep-
tually there is no reason for this.

It is even possible –and sensible– for a web search
engine to take information about the query initiator into
account. Such information could either be collected

in the form of data cookies or, simply, by considering
the browser language, connection type or geographi-
cal location. A user with a dial-up connection will
generally have a different user profile from a user of
a high-speed university domain so that different rank-
ing schemes might be appropriate. Similarly, a user in
Spain might prefer a different ranking than a user in
Germany.

7 Conclusions

Along this study we attempted to produce a complete
method for learning search engine ranking function(s).
Overall, our experiment was sound and its results were
very consistent: ranking only according to the strongest
feature for a category gives is able to predict the order in
which any pair of pages will appear in the results with
a precision of between 57% (for a data set including
commercial terms that are used in spam) and 70% (for
a data set including long queries from a very specific
domain). This was, despite trying various algorithms
and feature transformations, only mildly improved by
including other features.

If one had not split the data into a training and a
test set one could have, given the large number of fea-
tures and transformations we considered, achieved an
almost arbitrarily high precision on the training data,
but a worse performance on unseen data. In this arti-
cle we have also discussed the reasons for these results,
which are likely to be related to the lack of many cru-
cial features such as user preferences data and algorith-
mic details such as the possible use of topic-sensitive
PageRank.
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Abstract

We analyze the recent phenomenon termed a Link

Bomb, and investigate the optimal attack pattern for

a group of web pages attempting to link bomb a spe-

cific web page. The typical modus operandi of a link

bomb is to associate a particular page with a search

text and then boost that page’s pagerank. (The at-

tacking pages can only control their own content and

outgoing links.) Thus, when a search is initiated with

the text, a high prominence will be given to the at-

tacked page. We show that the best organization of

links among the attacking group to maximize the in-

crease in rank of the attacked node is the direct indi-

vidual attack, where every attacker points directly to

the victim and nowhere else. We also discuss optimal

attack patterns for a group that wants to hide itself

by not pointing directly to the victim. We quantify

our results with experiments on a variety of random

graph models.

1 Introduction

Generally, a search on a particular topic on a par-

ticular search engine (such as Google) will output a

ranked list of relevent web pages. The prominence

of a page in this listing is an important indicator of

how many people will visit the page. For a commer-

cial web site, its prominence with respect to prod-

uct searches has important financial consequences, as

does the prominence of a competitor’s website with

∗This work was partially supported by the National Science
Foundation under grant EIA-0091505

respect to slander about products. Prominence in

rankings is prestigious and can add credibility [10].

As a result of the importance attached to one’s

pagerank, especially one’s Google pagerank, artificial

methods for boosting one’s pagerank with respect to

a particular topic have become an active area for dis-

cussion. A prominent case was an attempt to “bring

down the White house” by giving high prominence

(in fact the primo ranking) to a web-biography of

the U.S. President with respect to the text “miserable

failure” [10, 14]. Such attacks are generally termed

Google bombs (named after the success of such at-

tacks on Google rankings), which are attempts to give

prominence to a particular web page with respect to

a particular (usually derogatory) piece of text1. We

study link bombs which attempt to alter the rankings

obtained through the PageRank algorithm by manip-

ulating the links - such attacks would be relevant to

any search engine that uses such a page ranking al-

gorithm. Link bombs need not be derogatory, for

example, a web-retailer could also make use of link

1After the first attack (which was with respect to the text
“talentless hack”), several other attacks also succeeded in rais-
ing the ranks of web pages with respect to specific keyword(s),
in some cases using as few as 25 links. It has been argued
that several factors contribute to the success of an attack,
eg. the number and prominence of the attacking pages; the
(un)popularity of the keyword. Many of these attacks were
usually initiated by Blogs which tend to be updated often and
have a lot of content. It has been argued that these factors
contribute to the high prominence of Blogs which in turn have
higher influence in the pagerank of other pages. Similarly,
some of the keywords chosen were very rare in the web pages,
such as “French Military Victories”. However, even attacks
using keywords as popular as “Weapons of Mass Destruction”
have been successful (BBC News, Sunday, 7 December, 2003).
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bombs to improve the prominence of its own web-

site with respect to a particular topic(s). The link

bombers are usually some (coordinated) set of web

pages which add outgoing links to their web page.

Some of these links will point to the attacked page,

and contain the text they (the bombers) are trying

to associate with the attacked page. The issue we

address is how these bombers should organize their

outgoing links in order to maximize the success of

their link bomb.

There is currently a great deal of discussion on

whether a link bomb can be considered an “unde-

sirable” attack [14] that exploits a weakness in the

pagerank algorithm [6, 12]. The pagerank algorithm

assigns you a pagerank by considering the number

and importance (according to PageRank) of web

pages that point to you. Given that a search engine

like Google currently ranks about 8 billion pages, one

would expect that a very small number of web pages

should not be able to change the ranking of a page

dramatically, contrary to what has been observed.

Thus, one motivation for studying the optimal at-

tack is to determine specific abnormal but effective

attack patterns that could be identified as artificial

Google bombs.

We present results on the optimal link bomb.

Specifically, the attackers are a set of web pages

whose outgoing links can be manipulated, and the

victim is the target web page to be bombed. Our

main result is to establish the following theorem as

a starting point for a discussion of accountability on

linked structures such as the WWW,

Theorem. The attack which maximizes the rank

of the victim with respect to page rank is the direct

individual attack.

The direct individual attack is the attack in which

every attacker points only to the victim and to no

other page. In particular, in the optimal attack, none

of the attackers point to each other. Thus, the op-

timal attack masquerades as a set of uncoordinated

“random” nodes, all pointing to the same page. We

also discuss optimal “disguised” attack patterns, in

which none of the attackers wish to directly point to

the victim – all paths from the attackers to the vic-

tim must be of at least some minimum length. In

this case the optimal attack is still a direct individ-

ual attack, however now the attackers point to some

other intermediate node (not the victim).

While the optimal attack is always the direct indi-

vidual attack, the amount by which the direct indi-

vidual attack surpasses other (more coordinated) at-

tack patterns may depend on the nature of the graph.

We give experimental results that quantify this phe-

nomenon for a variety of different attack patterns.

On certain random graph models of the Web, some

coordinated attack patterns are almost as good as

the direct individual attack, and can hence be used

in place of the direct individual attack as a means

of disguising the attack. While the effect of graph

structure on the pagerank has been investigated in

the literature [11, 6], to our knowledge, these are the

first results regarding the effect of the graph structure

on the effectiveness of link bombs.

Our results raise interesting questions such as how

to detect and respond to link bomb attacks (in gen-

eral this problem is NP-hard, see for example [16]).

Since the attackers will have no visible associations

amongst themselves, it is hard to detect and prove

that they are participating in an attack. If the op-

timal attack were a tree structure, there would be

a small set of nodes with high prominence that one

might argue are “responsible” for the attack. The

other nodes pointing to these nodes could also be

held accountable aiding and abbeting the actions of

the responsible nodes. Such accountability is not pos-

sible in an individual attack.

We proceed by first discussing some preliminary

definitions, followed by a preview of our result for

an isolated graph, in which the only nodes are the

attackers and the victim. We then discuss general

graphs, followed by some experimental results on a

variety of random graph models. We conclude with

a discussion of the implications of our results. (We

omit technical proofs which can be found in a full

version of this paper [1].)

2
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2 Preliminaries

A search query on a set of keywords results in an

ordered list of web pages W = {ωi}. Each web page

ω ∈ W contains some or all of the keywords either

in its text or in the text of a link that points from

some other web page to ω. A scoring function is used

to order the pages in W . The most prominent page

(page with the highest score) is given rank 1, etc.

Google [3] considers many factors in its scoring

function, including: keyword frequency; relative lo-

cations of the keywords; the position and style of the

keywords. An important factor in the scoring func-

tion is the pagerank which depends on how the web

page is embedded in the entire graph of web pages.

An early paper on the Google system [3] suggests

that no one factor dominates the scoring function,

however, the pagerank plays an important role. In

this paper, we will concentrate only on the pagerank

factor and discuss how it can be manipulated.

The web graph is a directed graph G = (V, E) that

models the World Wide Web. The vertex set V rep-

resents the pages and documents, and the edge set

E represents the links between the pages and docu-

ments2. The edges are directed: if (v1, v2) ∈ E, then

v1 contains a link to v2. In a web graph, the in-degree

indeg(v) of page v is the number of links that point

to v and the out-degree outdeg(v) is the number of

links originating from v that point to other pages. A

(directed) path of length ` is a sequence of vertices

v0, v1, . . . , v` with (vi−1, vi) ∈ E for i = 1, . . . , `. v`

is the terminal node in the path, and v1, . . . , v`−1 are

intermediate nodes. We allow parallel edges between

two vertices, but no self-loops.

The pagerank pi models the probability that node

i will be visited either by randomly navigating down

links in the web graph or by randomly jumping to

page i. Let α be the probability to navigate, and

1 − α the probability to jump. Then the pageranks

{pj} of the nodes in a graph simultaneously satisfy

2Note that the definition of an edge is traditionally given
by hyperlinks in a web page. However, it is also possible to
count URLs in the body of a web page as links. The definition
of what constitutes a link is usually application dependent.

the set of linear equations3

pi = α
∑

(vj ,vi)∈E

pj

outdeg(vj)
+

1 − α

N
. (1)

(0 ≤ α ≤ 1 and N = |V |.) The first term repre-

sents the probability to reach i by random naviga-

tion. An edge may appear multiple times if there are

parallel links. The second term represents the prob-

ability to reach i by randomly jumping. Typically,

α ∈ [0.85, 0.95]. pi is larger if vi has a large in-degree,

and its incoming links are from high pagerank nodes

with small out-degree. The PageRank algorithm [12]

is an iterative approach to solving these equations.

The pageranks are all initialized to p0
i = 1

N
. The

PageRank iteration [12] is given by

pt+1
i = α

∑

(vj ,vi)∈E

pt
j

outdeg(vj)
+

1 − α

N
. (2)

pt
i converges to the (unique) solution of (1). Every

page can manipulate its outgoing links, but it cannot

change its incoming links.

A link bomb, or attack occurs when a group of at-

tackers A = {v1, . . . , vK} alters their outgoing links

so as to boost the pagerank of a victim v0 6∈ A. Be-

fore the attack, if the edge set is E, then after the

attack the edge set will be Ē where the only edges

added or removed from E are of the form (vi, u) where

1 ≤ i ≤ K and u ∈ V , i.e., the attackers may remove

and/or add outgoing links only. After the attack,

the new web graph is Ḡ = (V, Ē). Let pi denote the

pageranks in the original graph G (before the attack),

and p̄i the pageranks in Ḡ (after the attack). The

magnitude of the attack ∆p0 = p̄0−p0 is the amount

by which the pagerank of the victim increased, and

is a measure of the success of the attack. In our anal-

ysis, we only consider the magnitude of the attack,

3An alternative and common formulation of the pageranks
in the literature is as the stationary distribution of a suitably
defined finite irreducible Markov chain with transition matrix
P = (1 − α)M + αU , where U is a matrix of 1’s. Many of
our results could be obtained by analyzing how the stationary
distribution changes under perturbations of P . Our approach
is more graph theoretic, treating the problem as a flow.

3
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and assume that all other factors entering into the

scoring function are unchanged.

3 The Optimal Link Bomb

In this section, we investigate how to maximize the

magnitude of the attack. In particular, we show that

the effectiveness of the attack does not increase if

the attackers try to coordinate the attack in some

way, by introducing links among themselves in order

to increase their ranks. (Recall that, incoming links

from higher ranked pages are more beneficial to your

rank.) First, we consider a simplified case, in which

the attackers and the victim are isolated from the rest

of the graph. We then consider the general case.

3.1 Isolated Graphs

We can restrict our attention to the vertex set com-

posed of the attackers and the victim, V = A ∪ v0

(i.e., N = |V | = K + 1). Assume (for simplicity)

that v0 does not point to any member of A. We first

consider some examples of attacks, before giving the

general result. In all cases, all the attackers A point

to the victim v0, and what differentiates the attacks

is how the attackers are themselves organized.

Direct Individual: The only links are to v0.

Tree: The attackers form a tree. For any graph

with a topological order, one can compute the page

ranks efficiently (in linear time). For analysis pur-

poses, we will specialize to a star attack in which

v2. . . . , vK point to v1 and all attackers point to v0.

Cycle: The attackers form a cycle.

Complete: The attackers a complete graph.

By solving the linear system (1) for the graph result-

ing from each of these attacks, we obtain

Lemma 1 For the isolated graph,

p̄0(individual) = p0(1 + αK),

p̄0(star) = p0

(

1 + α
2 (K(1 + α) + 1 − α)

)

,

p̄0(cycle) = p0

(

1 + αK
2−α

)

,

p̄0(complete) = p0

(

1 + αK
K(1−α)+α

)

,

where p0 = (1 − α)/(K + 1).

Since 0 ≤ α ≤ 1, after some algebra, we obtain

Theorem 1 For the isolated graph,

p̄0(individual) ≥ p̄0(star) ≥ p̄0(cycle) ≥ p̄0(complete).

In fact, the direct individual attack is optimal for the

isolated graph:

Theorem 2 For an isolated graph, p0 is maximized

(uniquely) by the individual attack.

3.2 Arbitrary Graphs

When v0, . . . , vK are embedded in a larger graph G,

the direct individual attack is still optimal. Intu-

itively, one can view the PageRank iteration (2) as

sending a flow of pagerank down the directed edges.

The maximum flow from vi to v0 occurs when vi

points directly to v0, and to no other node – any other

links divert the flow and lead to a lower magnitude

attack. The following results will make this intuition

more formal. We will generally refer to nodes which

are neither the attackers nor the victim by wj , and uj

will be used to refer to any node. The 1-neighborhood

N1(v) of a node v is the set of nodes to which v points.

Nk(v) (k > 1) is the set of k-neighborhood nodes:

u ∈ Nk(v) iff for some w ∈ Nk−1(v), (w, u) ∈ E.

Note that v could be in its own k-neighborhood for

k > 1, and N0(v) = {v}.

Consider attacker vi, and, without loss of general-

ity, assume it initially has no outgoing links. Suppose

now that it adds δ outgoing edges. This results in α
δ

of its rank “flowing” along each of its edges to its

4
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neighbors (note there may be parallel links). Thus,

the rank increase for a 1-neighbor uj is given by

∆1
j = α

∑

(vi,uj)∈E

pi

outdeg(vi)
,

where the superscript 1 indicates that uj is a 1-

neighbor, and j is an index that enumerates the 1-

neighbors. The sum is over all parallel edges that vi

may have to uj . This increase in rank in turn prop-

agates to 2-neighbors, resulting in an increase in the

rank of a 2-neighbor uk by an amount

∆2
k = α

∑

(uj ,uk)∈E

s.t uj∈N1(vi)

∆1
j

outdeg(uj)
.

The sum is over all 1-neighbors pointing to uk (in-

cluding parallel edges). If the newly added edges cre-

ate a path from vi to v0, then some amount of vi’s

pagerank will propagate to v0. We define ∆l
j to be

the change in the page rank of uj from flow down all

paths of length l from vi to uj ,

∆l
j = α

∑

(uk,uj)∈E

s.t uk∈Nl−1(vi)

∆l−1
k

outdeg(uk)

Let δ(l) be total increase in page rank through paths

of length l, δ(l) =
∑

j ∆l
j . Since the pagerank in-

crease attenuates by a factor α with each edge, we

have the following lemma.

Lemma 2 δ(l) ≤ αlpi, with equality iff δ(l − 1) =

αl−1pi and for every uk ∈ Nl−1(vi), outdeg(uk) > 0.

Let S be a set of nodes. A path q passes through

S if some node of S is an intermediate node of q.

A set of paths P pass through S if every path in P

passes through S. Let Pt be a collection of paths that

passes through S, with every path in Pt having the

same terminal node t 6= vi (t is not an intermediate

node of any path in Pt). We call t a progeny of S

with respect to the paths Pt. Since every path passes

through S, some prefix of every path in Pt has a

terminal node in S. For each path q ∈ Pt, let qS be

a (any) prefix with terminal node in S, and let Pt(S)

denote the collection of such distinct prefixes {qS}.

The influence I(S|Pt(S)) of vi on S is the total

flow of pagerank (summed over all nodes in S) from

vi to S along the paths in Pt(S) (which are (distinct)

prefixes in Pt). The influence I(t|Pt) of vi on t is

the total flow of pagerank that flows to t along the

paths in Pt (which pass through S). Every path in

Pt has at least one additional edge compared with

its corresponding prefix that terminates in S, so the

influence that propagates to t along Pt can be at most

the influence that propagates to S along the paths

in Pt(S), attenuated by a factor α. We have the

following lemma.

Lemma 3 I(t|Pt) ≤ αI(S|Pt(S)), independent of

which prefixes are used in the construction of Pt(S).

We now consider vi’s attack on v0. Let P denote the

collection of all (distinct) paths from vi to v0 in which

v0 appears only as the terminal node, i.e., v0 is not

an intermediate node of any path in P . Note that

if there are cycles in the graph, then P may contain

an infinite number of paths. Let the flow of pager-

ank from vi to v0 down the paths in P be denoted

∆. There may be cycles containing v0, in which case,

the pagerank increase ∆ will continue to flow around

these cycles, back to v0 increasing the pagerank fur-

ther, i.e., ∆ will be amplified by the cycles. Let ∆pi
0

be vi’s contribution to the magnitude of the attack,

∆pi
0(∆) = ∆ + amp(∆),

where amp(∆) is the amplification due to the cycles

that contain v0. The larger ∆, the larger will be the

amplification of ∆,

Lemma 4 ∆pi
0(∆) is monotonically increasing.

Lemmas 2, 3 and 4 are the main tools we will need to

prove our main result, namely that the individual at-

tack is optimal. By Lemma 4, since ∆pi
0 is monoton-

ically increasing in ∆, ∆pi
0 will be maximized when

∆ is maximized. ∆ is given by the sum of the flows of

pagerank from vi to v0 along the paths in P , therefore

we only need to consider this flow.

5
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Let ` be the length of the shortest path in P (there

may be many such shortest paths). Consider the set

L of all distinct paths of length ` originating at vi.

Some of these paths have terminal node v0. We now

restrict our attention to the set L′ containing those

paths in L which do not have terminal node v0. Note

that none of the paths in L′ can have v0 as an in-

termediate node since the shortest path from vi to

v0 has length `. Let Let S denote the set of terminal

nodes in L′. Partition P into two disjoint sets, P` and

P>`, where P` contains the paths in P with length `

and P>` the paths with length > `. Every path in

P>` must pass through at least one of the nodes in S,

therefore P>` passes through S. Every path in P>`

has terminal node v0, and v0 does not appear as an

intermediate node in any of these paths. Thus, v0 is

a progeny of S with respect to P>`. Every path in

P>` has a prefix of length ` with terminal node in S.

Collect these distinct prefixes into the set P>`(S).

Let ∆` be the contribution to ∆ due to flow along

the paths in P`, and ∆>` the contribution due to flow

along the paths in P>`. Then,

∆ = ∆` + ∆>`
(a)
= ∆`

v0
+ I(v0|P>`),

(b)

≤ ∆`
v0

+ αI(S|P>`(S)),

(c)

≤ ∆`
v0

+ I(S|P>`(S)),

(d)

≤ ∆`
v0

+
∑

s∈S

∆`
s

(e)
= δ(`)

(f)

≤ α`pi.

(a) follows from the definitions of ∆`
v0

and influence;

(b) follows from Lemma 3 and (c) because α ≤ 1.

(d) follows because the paths in P>`(S) are all of

length `, so P>`(S) is a subset of all the paths of

length ` that terminate in S; (e) follows from the

definition of δ(`), since S ∪ v0 = N`(vi); finally, (f) is

an application of Lemma 2. Equality occurs iff S is

empty, and all paths from vi are of length `, ending

at v0. Certainly, the optimal value of ` is 1, and so

we have the following theorem4.

4An alternative proof of this theorem using the Markov
chain approach can be given using a generalization of the result

Theorem 3 ∆pi
0 is maximized if and only if the only

edge from vi is to v0. This is independent of all the

other edges in the graph, in particular independent of

the edges from the other vj.

Theorem 3 directly implies the following result,

Corollary 1 The direct individual attack is optimal.

A related issue is whether the direct individual attack

also maximizes the rank (as opposed to the pagerank)

of the victim. This question is not immediately an-

swered by Theorem 3 since the actual rank depends

on the relative pagerank of v0 with respect to the

other nodes, and not the absolute pagerank of v0.

We will now show that the rank is also maximized by

the direct individual attack.

Suppose that some other attack X maximizes the

rank of v0. This means that for some node u, p̄I
v0

≤

p̄I
u and p̄X

v0
> p̄X

u (I denotes the direct individual

attack). We show that such a situation can never

occur, leading to the following result.

Theorem 4 The direct individual attack maximizes

the rank of v0.

3.3 The Optimal Disguised Attack

We now consider the situation in which the attackers

wish to maximize the magnitude of their attack on

v0, but they wish to disguise the attack by not point-

ing directly to the victim. In such an attack, the

anchor text will be associated to the victim, hence

we assume that the victim already has a high promi-

nence with respect to the anchor text. The specific

disguise constraint we consider is that for every at-

tacker, the shortest path to the victim should have

length at least ` ≥ 1.

Consider attacker vi. In any attack, some amount

of pagerank flows from vi to v0. In any directed

graph, we define f(u; v), the forward value of ver-

tex u with respect to vertex v, to be the fraction of

u’s pagerank that flows to v along paths with v as

in [5], where it is shown that adding the edge (i, j) can only
increase the rank of j.
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terminal node but not as intermediate node. Thus,

for example, f(v; v) = 1. Since the fraction of u’s

rank that makes it to v can be obtained by multi-

plying the fraction flowing to each neighbor with the

fraction flowing from that neighbor to v, we obtain

the forward equation for the forward values f(u; v):

f(v; v) = 1,

f(u; v) =
α

outdeg(u)

∑

(u,w)∈E

f(w; v). (3)

The forward equation (3) is similar to the pagerank

equation (1) and can be solved by an iterative algo-

rithm similar to the PageRank iteration [12].

For every vertex u (not an attacker), we consider

the edge set Eu = E ∪ (vi, u), which defines a new

directed graph in which the edge set is augmented by

a single link from the attacker to u. For this graph,

we can compute the forward value fu(w; v0) of any

vertex w with respect to v0. We define the value

Vi(u) of vertex u to attacker vi by

Vi(u) = fu(vi; v0).

By Lemma 4 the optimal attack is the one that max-

imizes the flow of pagerank to v0, which means that

vi should point to the node u satisfying the “disguise

constraints” that maximizes Vi(u). Arguments simi-

lar to those that led to Theorem 3 give

Theorem 5 The optimal disguised attack for a sin-

gle attacker vi is a single link to the vertex u, at dis-

tance ` − 1 from v0, which maximizes Vi(u).

Unfortunately, the maximizing node Vi(u) need not

be the same for different attackers – the disguise con-

straint introduces dependencies between attackers,

i.e., the optimal attack for a particular attacker may

depend on what the other attackers do. In particu-

lar, it is no longer the case that each attacker using

its optimal disguised individual attack will maximize

the magnitude of the disguised attack if the group of

attackers act jointly. The following example with two

attackers and ` = 2 illustrates the issue.

v2v1

u

v0

w

x

(a) Optimal individual attacks.

v2v1

u

v0

w

x

(b) Optimal joint attack.

The optimal attack for v1 is to point to u for v2 is

to point to w (red dotted arrows in (a)). However,

if both attackers attack, then they should both point

to u. This is generally true,

Theorem 6 There is an optimal joint attack in

which all attackers point to the same intermediate

node u which is distance ` − 1 from v0.

A detailed comparison of the optimal joint attack

with the greedy strategy in which the attackers each

adopt their individually optimal attacks is beyond

the scope of this current paper.

4 Experimental results

In this section, we give some preliminary experimen-

tal results that quantify the effectiveness of Google

bombs in various environments. There are four main

degrees of freedom we explore: the nature of the

graph, including its connectivity or edge density; the

prominence (pagerank) of the attackers; the promi-

nence of the victim; and, the value of α.

We ran our experiments on three types of graphs:

Random is an Erdös-Reyni type (G(n, p)) random

graph with edge probability p; BA (Barabási-Albert)

is a preferential-attachment random graph with 5

outgoing edges per vertex [2]; (Such graphs are

known to have power-law in-degree distributions, and

since we add the vertices sequentially, there are no

cycles.) MWDTA is a modified “Winner’s don’t

take all” random graph in which every node has at

7
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least one out-going edge method [13]. (Such graphs

are known to model certain characteristics of the

world wide web graph such as power-law in and

out-degree distributions.). The main difference be-

tween MWDTA and BA random graphs is that in

MWDTA, a larger number of nodes will have sig-

nificant indegree, whereas in BA a few nodes have

very large in-degrees. In order to make fair com-

parisons, we normalize graphs from different random

graph models (Random, BA or MWDTA) to have

the same expected number of edges.

First, we generate a random graph with 1,000

nodes, and randomly select 10 attackers and a victim.

We then remove outgoing edges from the attackers

and perform a pagerank computation, obtaining:
p0, the page rank of the victim;
pA, the average pagerank of the attackers;

fp(p), the pagerank distribution in the graph;
σp, the std. dev. of the pagerank distribution.

We only show results for two of the attacks described

in Section 3.1: the optimal direct individual attack

I, and the cycle attack C (the results for other sub-

optimal attacks are similar). Each attack is repeated

a number of times on randomly generated graphs to

increase the statistical significance of the results. We

use the following measures of success for attack X ,

G(X) = Gain = ∆pX
0 /p0,

Ḡ(X) = Normalized Gain = ∆pX
0 /σp,

D(X) = Discrepancy Factor = G(I)/G(X).

D̄(X) = Normalized Discrepancy = Ḡ(I) − Ḡ(X).

The pagerank distribution fp(p) generally affects the

effectiveness of an attack. Figure 1(a) shows pager-

ank distributions for the various random graphs. As

can be seen, Random has a (near) Normal distribu-

tion, compared with BA and MWDTA which have

power-law type distributions in which MWDTA ap-

pears to have a slightly fatter tail than BA.

Some detailed results on the effectiveness of the at-

tacks are shown in Figure 1: (b) shows how connec-

tivity (number of edges) in Random graphs with dif-

ferent p affects the attack; (c) shows different graph

types; (b,c) show the dependence on the prominence

of the attackers, and (d) on the prominence of the vic-

tim; (e) shows the dependence on α; and, (f) shows

some results for the rank (as opposed to the pager-

ank). We give a summary of the results below.

Higher Density: All attacks decrease in magni-

tude (new edges have little additional effect when the

graph is already dense).

Graph type: Prominence of attackers has (by far)

the largest impact in Random graphs, then BA and

MWDTA. (Pageranks in Random graphs are “con-

centrated” around the mean, so any bias in the vic-

tim’s pagerank results in it becoming extreme. This

is less so for BA and even less so for MWDTA.).

Higher Prominence of Attackers: Stronger attack.

Higher Prominence of Victim: Attacks become less

effective and D(C) decreases (diminishing returns).

Lower α: D(C) increases (it is more costly to divert

from the individual attack).

Rank: For random graphs, an attack usually results

in a top ranking for the victim, which is not usually

the case for BA and MWDTA graphs.

5 Discussion

We have shown that the best attack is the direct in-

dividual attack, in particular: any organized struc-

ture among the attackers reduces the impact of the

attack; links that cycle back to attackers in an at-

tempt to boost their pageranks are detrimental. The

discrepancy between the optimal individual attack

and suboptimal attacks can strongly depend on the

graph type through the initial pagerank distribution.

Our results indicate conditions that offer resistance

to rank manipulation: dense, power-low type graphs

in which victims already have high rank, attackers

have low rank and α is small. Our analysis has been

focused on increasing a page’s rank (pagerank ma-

nipulation) in the entire graph, i.e., the victims rank

is increased for every query. The underlying model is

that the query identifies a set of nodes (based on text

and anchor text), which defines an induced subgraph

of the original graph. However, the nodes are ranked

according to pagerank in the original graph. This

model has the feature that pageranks do not need
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to be recomputed for the specific query. An alterna-

tive approach is to order the nodes with respect to

the pageranks in the induced subgraph (hence these

pageranks would need to be recomputed for every

query). Such a model would mean that one attempts

to boost the pagerank with respect to a specific query

and not others. Our analysis does not apply to this

model, and it is no longer true that the optimal at-

tack is the direct individual attack. The following

example (with a single attacker) illustrates the issue.

v0

X X

X

v1

(a) Original graph.

X

v0

X

X

X

v1

X

(b) Direct attack.

X

v0

X

X

X

v1

X

X

X

(c) Indirect attack.

In (a) we show the original graph, where X will be

the query text and the attacker wants to boost the

rank of v0 with respect to X . In (b) we show the

subgraph induced by the direct attack, where the at-

tacker places X in its page as well as in the anchor

text of the link. In the resulting induced subgraph,

the rank of v0 is not the highest. The benefit of the

non-direct attack in (c) is that other nodes that point

to v0 get included into the induced subgraph. Thus

while the flow of rank from v1 to v0 is decreased, this

is more than compensated for by the additional rank

contribution from the newly included nodes. A bet-

ter attack would arise if v1 added another link to v0.

In fact for any attack in which v1 has k links to v1,

a strictly better attack with k + 1 links is possible.

In this example, there is no optimal attack. In gen-

eral, we can formulate this notion by saying that the

attacker should add the minimum number of links to

all nodes with paths to the victim which do not con-

tain the query text, and hence would not be included

in the subgraph. The attackers should then place as

many parallel direct links as feasible. The end effect

is to include all nodes with paths to the victim with

a minimum diversion of page rank. Of course, such a

huge attack is not very practical, and an interesting

question is to consider the optimal attack under this

model when each attacker has a fixed budget of links.

The PageRank algorithm favors attacks from

groups that are not well connected, which makes it

harder to detect the attack, and accountability in

such an attack formation becomes an issue: who is

responsible for the attack? Different variations of the

PageRank algorithm may suffer a similar fate if they

propagate the pagerank in a similar way (for exam-

ple Topic-Sensitive PageRank [8], provided that the

attacking group is considered relevant to the query).

In order to avoid such a fate (a dilemma faced by

any ranking method open to manipulation by small

groups), either one must change the ranking func-

tion or somehow exclude the attacking group from the

search engine’s database. While such an approach is

a reasonable way to deal with private companies at-

tempting to manipulate rankings based on their own

views, it is not very democracy-friendly to arbitrarily

remove certain pages from a search engine.

As discussed in [6], the PageRank algorithm makes

certain assumptions about the user navigation pat-

terns and the web structure that may not apply to

the Web anymore. [6] considers the effect of dan-

gling nodes in the pagerank computation and pro-

vides methods to adjust for them. They also point

out that users will rarely (if ever) navigate to one of

several billion pages uniformly – they may not even

know that these pages exist. In fact, users gener-

ally start from known sites and navigate from there.

Hence, random navigation is more likely to bring

them to one of these “anchor” sites. The HostRank

algorithm [6] uses this assumption to choose a set of
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anchor sites, and they show that such an approach

is more resistant to attacks. A related issue is that

of navigation along links from a site. One is more

likely to trust a link on a highly ranked page, and

one is more likely to follow a link to a highly ranked

page. For example, it might be much more proba-

ble to follow one of the links from a search engine

or a news Web site than a regular web page. The

probability to navigate from a page in the PageRank

algorithm is independent of a page’s rank, and the

link one selects to navigate is random. A plausible

alternative is that the probability to navigate from

a page should be proportional to the page’s pager-

ank, and the probability to use a particular outgoing

link is proportional to the pagerank of the destina-

tion page. Such a navigation model would lead to an

equation (analogous to (1)) of the form

pi = καpi

∑

(vj ,vi)∈E

p2
j

∑

(vj ,vk)∈E

pk

+
1 − α

N
.

More effort could be spent how the transition prob-

abilities generally affect the pageranks and their ma-

nipulability. [6] discusses such issues for nodes with

unknown outgoing links and [15] uses the amount of

traffic flow through the nodes to model the transi-

tion probabilities. It would be interesting to see what

the optimal attack with such ranking algorithms is.

In short, objective methods for the selection of the

anchor sites or more plausible navigation models de-

serves closer examination. One must also bear in

mind (see for example [6]) that the computational

complexity of the algorithm is also an important

practical consideration for any ranking algorithm.

Other factors, which we do not study here, might

be significant to the success of an attack. [7] argues

that anchor text pointing to a page gives informa-

tion regarding the subject matter of that page, and

relationships between different pages. For example,

Google may consider both the pagerank and the fre-

quency of keywords in links pointing to a page when

computing the score of the page. Google bombs in

the past used the same keywords when pointing to

the attacked page, i.e., the bombing links were corre-

lated in that they all had the same keywords, whereas

in general, links pointing to a website would not dis-

play such a correlation. If some linear combination of

these two factors is then used in the final score, it will

favor attacks over the natural Web behavior. If some

small group of sites use a specific keyword to point

to a victim, it is unlikely that this groups’s sites are

unrelated, and one could (for example) add pseudo-

links among these sites, since the expection would be

that they participate in some group structure. As

our results show, these pseudo-links will reduce the

magnitude of the attack. One could go so far as to

say that if after the addition of such pseudo-links in

the graph, the pagerank distribution does not change

significantly, then the ranking algorithm should be

more resistant to manipulation.

The analysis of the optimal attack structure pro-

vides a new tool for looking at resistance to link ma-

nipulation. Such metrics and an understanding of op-

timal attack formations for other algorithms should

be fruitful directions for future work.
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Figure 1: Experimental Results for n = 1000.
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ABSTRACT
Web spamming, the practice of introducing artificial text
and links into web pages to affect the results of searches,
has been recognized as a major problem for search engines.
It is also a serious problem for users because they are not
aware of it and they tend to confuse trusting the search
engine with trusting the results of a search.

In this paper, we first analyze the influence that web spam
has on the evolution of the search engines and we identify the
strong relationship of spamming methods to propagandistic
techniques in society. Our analysis provides a foundation to
understanding why spamming works and offers new insight
on how to address it. In particular, it suggest that one could
use anti-propagandistic techniques in the web to recognize
spam. The second part of the paper demonstrates such a
technique, called backwards propagation of distrust.

In society, recognition of an untrustworthy message (in
the opinion of a particular person or other social entity) is a
reason for questioning the entities that recommend the mes-
sage. Entities that are found to strongly support untrust-
worthy messages become untrustworthy themselves. So, so-
cial distrust is propagated backwards for a number of steps.
Our algorithm simulates this social behavior on the web
graph.

In our algorithm, starting from an untrustworthy (accord-
ing to the end user) site s, we examine its trust neighbor-
hood, that is, the neighborhood of sites that link to s in a
few steps. Evaluating the sites-members of the neighbor-
hood we identify a biconnected component (BCCs) with a
high percentage of untrustworthy sites. BCCs are formed
when there are multiple paths to reach s, thus indicating a
concerted effort to promote s. This is not the case when
starting from a trustworthy site.

Our tool explores thousands of nodes within minutes and
could be deployed at the browser-level, making it possible
to resolve the moral question of who should be making the
decision of weeding out spammers in favor of the end user.

Our approach can lead to browser-level web spam filters
that work in synergy with the powerful search engines to
deliver personalized, trusted web results.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.m [Information Storage and
Retrieval]: Miscellaneous

Copyright is held by the author/owner(s).
AIRWeb2005, May 10, 2005, Chiba, Japan.
.

General Terms
Algorithms, Experimentation, Social Networks, Propaganda,
Trust

Keywords
search, Web graph, link structure, PageRank, HITS, Web
spam

1. INTRODUCTION
Web spamming is often defined as the practice of manip-

ulating web pages in order to cause search engines to rank
some web pages higher than they would without any manip-
ulation1. Spammers aim at search engines, but target the
end users. Their motive is usually commercial, but can also
be political, or religious.

One of the reasons behind the users’ difficulty to distin-
guish trustworthy from untrustworthy information comes
from the success that both search engines and spammers
have enjoyed in the last decade. Users have come to trust
search engines as a means of finding information, and spam-
mers have successfully managed to get them to transfer that
trust to the results of each search.

From their side, the search engines have put considerable
effort in delivering spam-free query results and have devel-
oped sophisticated ranking strategies. Two such ranking
strategies that have received major attention are the well-
known PageRank [6] and HITS [28] algorithms. Achieving
high PageRank has become a sort of obsession for many
companies’ IT departments, and the raison d’être of spam-
ming companies. Some estimates indicate that at least 8%
of all pages indexed is spam [12] while experts consider web
spamming the single most difficult challenge web searching
is facing today. [23]. Search engines typically see web spam
as an interference to their operations and would like to re-
strict it, but there can be no algorithm that can recognize
spamming sites based solely on graph isomorphism [5].

First, however, we need to understand why spamming
works beyond the technical details, because spamming is
a social problem first, then a technical one. In this paper
we show its extensive relationship to social propaganda, and
evidence of its influence on the evolution of search engines.

1We should mention here that there is not a complete agree-
ment on the definition of web spam among authors, which
leads to some confusion. Moreover, to people unfamiliar
with web spam, the term is mistaken for email spam. A
more descriptive name for it would be “search engine rank-
ing manipulation.”
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Our approach can explain the reasons web spamming has
been so successful and suggest new algorithmic ways of deal-
ing with it. Finally, we discuss what we believe should be a
frame for the long-term approach to web spam.

The rest of this paper is organized as follows. The next
section gives an overview of the problem of web spamming
and information reliability for a general audience. Section 3
discussed the relationship between webgraph and the trust
social network while the following section analyzes the evo-
lution of search engines as their response to spam. Section 5
describes the backward propagation of distrust method and
the following section presents some of our experimental re-
sults running this algorithm. Section 7 discusses some re-
lated research and the final section has our conclusions and
some discussion of future directions of this work.

2. BACKGROUND
The web has changed the way we inform and get informed.

Every organization has a web site and people are increas-
ingly comfortable accessing it for information for any ques-
tion they may have. The exploding size of the web necessi-
tated the development of search engines and web directories.
Most people with online access use a search engine to get in-
formed and make decisions that may have medical, financial,
cultural, political, security or other important implications
[10, 40, 24, 32]. Moreover, 85% of the time, people do not
look past the first ten results returned by the search en-
gine [38]. Given this, it is not surprising that anyone with
a web presence struggles for a place in the top ten posi-
tions of relevant web search results. The importance of the
top-10 placement has given birth to a new industry, which
claims to sell know-how for prominent placement in search
results and includes companies, publications, and even con-
ferences. Some of them are willing to bend the truth in order
to fool the search engines and their customers, by creating
web pages containing web spam [12].

The creators of web spam are often specialized companies
selling their expertise as a service, but can also be the web
masters of the companies and organizations that would be
their customers. Spammers attack search engines through
text and link manipulations [23, 19]:

• Text spam: This includes excessively repeating text
and/or adding irrelevant text on the page that will
cause incorrect calculation of page relevance; adding
misleading meta-keywords or irrelevant “anchor text”
that will cause incorrect application of rank heuristics.

• Link spam: This technique aims to change the per-
ceived structure of the webgraph in order to cause in-
correct calculation of page reputation. Such examples
are the so-called “link-farms”, “mutual admiration so-
cieties”, page “awards”, domain flooding (plethora of
domains that re-direct to a target site), etc.

Both kinds of spam aim to boost the ranking of spammed
web pages. Sometimes cloaking is included as a third spam-
ming technique [23, 20]. Cloaking aims to serve different
pages to search engine robots and to web browsers (users).
These pages could be created statically or dynamically. Static
pages, for example, may employ hidden links and/or hidden
text with colors or small font sizes noticeable by a crawler
but not by a human. Dynamic pages might change content
on the fly depending on the visitor, submit millions of pages

to “add-URL” forms of search engines, etc. We consider
the false links and text themselves to be the spam, while,
strictly speaking, cloaking is not spam, but a tool that helps
spammers hide their attacks.

Since anyone can be an author on the web, these prac-
tices have naturally created a question of information reli-
ability. An audience used to trusting the written word of
newspapers and books is unable, unprepared or unwilling
to think critically about the information obtained from the
web. A recent study [17] found that while college students
regard the web as a primary source of information, many
do not check more than a single source, and have trouble
recognizing trustworthy sources online. In particular, two
out of three students are consistently unable to differentiate
between facts and advertising claims, even “infomercials.”
Very few of them would double-check for validity. At the
same time, they have considerable confidence in their abil-
ities to distinguish trustworthy sites from non-trustworthy
ones, especially when they feel technically competent. We
have no reason to believe that the general public will per-
form any better than well-educated students. In fact, a re-
cent analysis of internet related fraud by a major Wall Street
law firm [10] puts the blame squarely on the investors for
the success of stock fraud cases.

3. THE WEBGRAPH AS A SOCIAL NET
The web is typically represented by a directed graph [8].

The nodes in the webgraph are the pages (or sites) that
reside on servers on the internet. Arcs correspond to hyper-
links that appear on web pages (or sites). Web spammers
are trying to alter the web graph in ways beneficial to them.

The theory of social networks of Trust [41] also uses di-
rected graphs to represent relationships between social enti-
ties. The nodes correspond to social entities (people, institu-
tions, ideas). Arcs correspond to recommendations between
the entities they connect. Propagandists are trying to alter
the trust social net in ways beneficial to them.

This connection is more than just a similarity in descrip-
tions. The web itself is a social creation, and both PageR-
ank and HITS are socially inspired ranking algorithms. [6,
28, 36]. Socially inspired systems are subject to socially in-
spired attacks, however. Not surprisingly then, the theory
of propaganda detection [31] can provide intuition into the
dynamics of the web graph. First developed in the begin-
ning of World War II by the Institute for Propaganda Anal-
ysis [15, 31], the theory of propaganda detection identifies
several techniques that propagandists often employ in order
to manipulate perception. Name calling, glittering gener-
alities, testimonial, bandwagon and transfer are the more
well-known of them.

PageRank is based on the assumption that the reputation
of an entity (a web page in this case) can be measured as
a function of both the number and reputation of other en-
tities linking to it. A link to a web page is counted as a
“vote of confidence” to this web site, and in turn, the repu-
tation of a page is divided among those it is recommending
2. The implicit assumption is that hyperlink “voting” is tak-
ing place independently, without prior agreement or central

2Since HTML does not provide for “positive” and “nega-
tive” links, all links are taken as positive. This is not always
true, but is considered a reasonable assumption. Recently,
Google introduced the “nofollow” attribute for hyperlinks,
but it is very unlikely that web spammers will use it.
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Graph Theory Web Graph Trust Social Network
node web page or site social entity
node weight rank (accord. to SE) reputation (accord. to user)
node weight computation ranking formula based on top recommenders

automatic on demand
arc hyperlink trust opinion
arc meaning vote of confidence recommendation
arc weight degree of confidence degree of entrustment
arc weight computation ranking formula arbitrary, semi-consistent
arc weight range [0 . . . 1] [distrust . . . trust]

Table 1: Graph theoretic correspondence between the Webgraph and the Trust Social Network.

control. Spammers, like social propagandists, form struc-
tures that are able to gather a large number of such “votes
of confidence” by design, thus breaking the assumption of
independence in a hyperlink.

Table 1 has the correspondence between graph theoretic
terms, the web graph according to a search engine, and the
trust social network of a particular user.

4. EVOLUTION OF SEARCH ENGINES
In the early 90’s, when the web numbered just a few mil-

lion servers, the first generation search engines were rank-
ing search results using classic information retrieval tech-
niques: the more rare words two documents share, the more
similar they are considered to be. [37, 22] A search query Q
is simply a short document and the results of a search for Q
are ranked according to their (normalized) similarity to the
query.

The first attack to this “tf.idf ranking,” as it is known,
came from within the search engines. Around 1995, search
engines started selling search keywords to advertisers as a
way of generating revenue: If a search query contained a
“sold” keyword, the results would include targeted adver-
tisement and a higher ranking for the link to the sponsor’s
web site. This is the first time we have a socially inspired
ranking, which follows marketing practices of the real world.

Mixing search results with paid advertisement raised se-
rious ethical questions, but also showed the way to financial
profits to spammers who started their own attacks by creat-
ing pages containing many rare keywords to obtain a higher
ranking score. In terms of propaganda theory, the spammers
employed a variation of the technique of glittering general-
ities to confuse the first generation search engines [31, pg.
47]:

The propagandist associates one or more suggestive words
without evidence to alter the conceived value of a person or
idea.

To avoid spammers search engines would keep secret their
exact ranking algorithm. Secrecy is no defense, however,
since secret rules were figured out by experimentation and
reverse engineering. (e.g., [35, 33]).

Second generation search engines started employing
more sophisticated ranking techniques in an effort to nul-
lify the effects of glittering generalities. One of the more
successful techniques was based on the “link voting princi-
ple”: Each web site s has value equal to its “popularity”,
which is influenced by the set Bs of sites pointing to site s.
Lycos became the champion of this ranking technique and

had its own popularity skyrocket around 1996.[34]. Doing
so, it was also distancing itself from the ethical questions
introduced by combining advertising with ranking.

Unfortunately, this ranking method did not succeed in
stopping spammers either. Spammers started creating clus-
ters of interconnected web sites that had identical or similar
contents with the site they were promoting, which subse-
quently became known as “link farms” (LF). The link voting
principle was socially inspired, so spammers used the well
known propagandistic method of bandwagon to circumvent
it [31, pg. 105]:

With it, the propagandist attempts to convince us that all
members of a group to which we belong are accepting his
program and that we must therefore follow our crowd and
“jump on the band wagon”.

Similarly, the spammer is promoting the impression of a
high degree of popularity by inter-linking many internally
controlled sites that will eventually all share high ranking.

The introduction of PageRank in 1998 was a major devel-
opment for search engines, because it seemed to provide a
more sophisticated anti-spamming solution. Under PageR-
ank, not every link contributes equally to the “reputation”
of a page. Instead, links from highly reputable pages con-
tribute much higher than links from other sites. That way,
the site networks developed by spammers would not influ-
ence much their PageRank, and Google became the search
engine of choice. HITS is another socially-inspired ranking
which has also received a lot of attention. [28]. The HITS al-
gorithm divides the sites related to a query between “hubs”
and “authorities”. Hubs are sites that contain many links
to authorities, while authorities are sites pointed to by the
hubs and they both gain reputation.

PageRank and HITS marked the development of the third
generation search engines 3. Unfortunately, spammers have
again found ways of circumventing them. In PageRank, a
page enjoys absolute reputation: its reputation is not re-
stricted on some particular issue. Spammers deploy sites
with expertise on irrelevant subjects, and they justifiably
acquire high ranking on their expert sites. Then they band-
wagon their networked sites with the expert sites, creating a
“mutual admiration society” (MAS). This is the well-known
propagandistic technique of testimonials [31, pg. 74]:

Well known people (entertainers, public figures, etc.) offer
their opinion on issues about which they are not experts.

HITS has also shown to be highly spammable by this tech-

3[7] considers the search engines in our 2nd and 3rd gen-
eration to be in the same group. We believe that both the
ranking and attack methods put them in different categories.
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nique due to the fact that its effectiveness depends on the
accuracy of the initial neighborhood calculation.

The table below summarizes our findings for the first three
generations of search engines and the correspondence be-
tween web spam and social propaganda.

SE Ranking Spamming Propaganda

1st Gen Doc keyword glittering
Similarity stuffing generalities

2nd Gen + Site + link + bandwagon
popularity farms

3rd Gen + Page + mutual + testimonials
reputation admiration

societies

Web search corporations are reportedly busy developing
the engines of the next generation [7]. The new search en-
gines hope to be able to recognize “the need behind the
query” of the user. Given the success the spammers have
enjoyed so far, one wonders how will they spam the fourth
generation engines. Is it possible to create a ranking that is
not spammable? Put another way, can the web as a social
space be free of propaganda? Seen in this light, it appears
that we are trying to create in cyberspace what societies
have not succeeded in creating in their social space. This
may not be possible. However, we can learn to live in a
web with spam as we live in society with propaganda, given
appropriate education and technology.

5. AN ANTI-PROPAGANDISTIC METHOD
Web Spam seems to be the driving force behind the evo-

lution of search engines in their effort to provide quality
results. So far, the battle with web spam is only waged at
the search engine level, though the end users are the ones af-
fected directly by it. When users query a popular search en-
gine for questions that happen to be the target of unreliable
advertisement (e.g., “Can human growth hormone increase
muscle mass?”) or happen to be controversial in nature (e.g.,
“is ADHD a real disease?”), they find plethora of responses
that can be considered untrustworthy. For example, the first
query provides almost exclusively links to human growth
hormone (hGH) products that, among other benefits, would
significantly increase muscle mass without increased exer-
cise, decrease fat without change in diet or habits, enhance
sexual performance, increase the good cholesterol while de-
creasing the bad, re-grow hair, decrease blood pressure, re-
move wrinkles, and increase memory retention. Similarly, in
the second query one finds an unbalanced view of attention-
deficit, hyperactivity disorder (ADHD) that does not include
the opinion of major institutions such as the American Psy-
chiatric Association or clinicians in major research univer-
sities. To the inexperienced user it may appear that the
search engine promotes untrustworthy, unreliable or unbal-
anced views. What really happens, of course, is that these
queries have been the target of spammers.

Since spammers employ propagandistic techniques, it makes
sense to design anti-propagandistic methods for defending
against them. These methods need to be user-initiated. We
are considering trustworthiness to be a personal decision,
not an absolute quality of a site. One person’s gospel is
another’s political propaganda, and our goal is to design
methods that help individuals make more informed deci-

sions about the quality of the information they find on the
web.

Here is one way that people defend against propaganda in
every day life:

In society, when an untrustworthy recommendation is de-
tected, it gives us a reason to reconsider the trustworthiness
of the recommender. Recommenders who strongly support an
untrustworthy recommendation become untrustworthy them-
selves.

This process is selectively repeated a few times, propagat-
ing the distrust backwards to those who strongly support the
recommendation. The results of this process become part of
our belief system and are used to filter future information.

We set out to test whether a similar process might work
on the web. Our algorithm takes as input the URL of the
server s containing a page that the user determined to be un-
trustworthy. This page could have come to the user through
web search results (like the ones above) or via the sugges-
tion of some trusted associate (e.g., a society that the user
belongs to).

Starting from s we build a breadth-first search (bfs) tree
of the sites that link to s in a few “clicks” (Figure 1). We
do not explore the web neighborhood directly in this step.
Instead, we use the Google API [16] for finding the backlinks.
We call the directed graph that is revealed by the backlinks,
the “trust neighborhood” of s.

The question arises on whether we should distrust all of
the sites in the trust neighborhood of s or not. Is it rea-
sonable to become suspicious of every site pointing to s
in a few steps? They are “voting in confidence” after all.
Such a radical approach is not what we do in everyday life.
Rather, we selectively propagate distrust only to those that
most strongly support an untrustworthy recommendation.
Thus, we decided to take a conservative approach and ex-
amine only those sites that show a more concerted effort in
supporting s. In particular, we focused on the biconnected
component (BCC) that includes s (Figure 2).

A BCC is a graph that cannot be broken into discon-
nected pieces by deleting any single vertex. An important
characteristic of the BCC is there are at least two indepen-
dent paths from any of its vertices to s. Strictly speaking,
the BCC is computed on the undirected graph. But since
the trust neighborhood is generated through the bfs, the
cross edges (in bfs terminology) create cycles in the undi-
rected graph (Figure 1). Each cycle found in the BCC must
have at least one “ring leader”, from which there are two
directed paths to s, one leaving through the discovery edge
and the other through the cross edge. We view the existence
of multiple paths from ring leaders to s as evidence of strong
support of s. The BCC reveals the members of this support
group.

More formally, the algorithm is as follows:

Input: Untrustworthy site s.

S = {s}

Using BFS for depth D do:

Find the set U of sites linking to sites in S

using the Google API (up to B backlinks / site)

Ignore blogs, directories, edu’s

S = S + U

Compute and output the BCC of S that includes s
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Figure 1: An example of a breadth-first search tree
in the trust neighborhood of site 1. Note that some
nodes (12, 13, 16 and 29) have multiple paths to
site 1. We call these nodes “ring leaders” that show
a concerted effort to support 1.

Figure 2: The BCC of the trust neighborhood of
site 1 is drawn in a circular fashion for clarity.

To be able to implement the above algorithm at the browser
side, we restrict the following parameters: First, the BFS’s
depth D is set to 3. We are not interested in exploring a
large chunk of the web, just a small neighborhood around
s. Second, we limit the number B of backlink requests from
the Google API to 30 per site. Finally, we introduced in ad-
vance a set of stop sites that are not to be explored further.
A stop site is one that should not be included in the trust
neighborhood either because the trustworthiness of such a
site is irrelevant, or because it cannot be defined. In the
first category we placed URLs of educational institutions
(domains ending in .edu). Academicians are not in the busi-
ness of pointing to commercial sites. When they do, they
do not often convey trust in the site. In the latter we placed
a few well known Directories (URLs ending in yahoo.com,
dmoz.org, etc.) and Blog sites (URLs containing the string
’blog’ or ’forum’). Anyone can put an entry into an unsu-
pervised blog or directory. No effort to create an exhaustive
list of blogs or directories was made.

With these restrictions, our algorithm can be implemented
on an average workstation and produce graphs with up to a
few thousand nodes within minutes. Note that the slowest
step is the query of the backlinks. More recently, a threaded
version of the program can explore several thousand sites in
minutes.

6. EXPERIMENTAL RESULTS
In our experiments, we examined the trust graphs of eight

untrustworthy and two trustworthy sites, collected from the
search results of the first hGH query and of query “Benefits
of Calcium supplements”. In the table 2 below these sites
are labeled as U-1 to U-8 and T-1 to T-2, respectively. See
Figure 3 for an example of one such site (U-1). We run
the experiments between September 17 and November 5,
2004. We should note here that all sites have comparable
PageRank. In fact, all but U-1 and T-1 have PageRank 5.
The remaining two sites have PageRank 6. (Pageranks were
recorded at the time of the experiments.)

To determine the trustworthiness of each site we had an
evaluator look at a sample of the sites of the BCC. Due
to the significant manual labor involved, only 20% of the
total 1,396 BCC sites were sampled and evaluated. To select
the sample sites, we employed stratified sampling with skip
interval 5. The stratum used was similarity of the site to
the starting site.

Each site in the sample was classified as either Trustwor-
thy, Untrustworthy, or Non-determined. The last category
includes a variety of sites for which the evaluator could not
clearly classify due to the language used in the site, the sub-
ject matter, or the fact that a Blog or Directory can not
fall simply into one of the U/T categories. (Not every blog
contains the string “blog” in their URL.)

The experiments show that the trustworthiness of the
starting site was a very good predictor for the trustworthi-
ness of the BCC sites. In fact, there were very few trustwor-
thy sites in the trust graph of sites U-1 to U-8. As one might
expect, a trustworthy site is unlikely to deliberately link to
an untrustworthy site, or even to a site that “associates” it-
self with an untrustworthy one. In other words, the “vote of
confidence” analogy holds true for sites that are responsibly
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Figure 3: The trust graph of starting site U-1. The
circularly drawn nodes in the middle form its largest
biconnected component. This experiment found a
trust graph of 1307 sites, 228 of which were con-
nected with 465 edges into a BCC. Only 2% trust-
worthy sites were found in the BCC, while 74% of
them were untrustworthy. The remaining sites were
mostly directories (13%) or other non-determined
sites.
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Figure 4: Histogram of the results in table 2.

choosing their links. On the other hand, the analogy is not
as strong when starting from a trustworthy site, since un-
trustworthy sites are free to link to whomever they choose.
After all, there is some value in portraying a site in good
company. Users may be tempted to conclude that, if a site
points to “good” sites, it must be “good” itself – another
well-known propagandistic technique. Yet, spammers are
unlikely to link to too many sites outside their spamming
network in order to avoid “leaking” PageRank [5].

Research in the past has focused on the identification of
web communities through the use of bipartite cores [29] or
maximum flow in dense subgraphs [14]. These ideas do not
apply to our construction. For one, we are not trying to
identify a community of the starting site, but a sample of
its trust neighborhood. In fact, we never look at the links
coming out of s (or any other site) directly. One of the
benefits of our method is that we do not need to explore the
web graph explicitly, which would be impossible for a client
computer.

7. RELATED WORK
Web spamming has received a lot of attention lately [1, 3,

4, 5, 12, 13, 20, 22, 23, 25, 29, 32, 33, 35]. The first papers
to raise the issue were [33, 23]. The spammers’ success was
noted in [4, 10, 12, 13, 17, 24]. Web search was explained in
[2]. The related topic of cognitive hacking was introduced
in [11].

Characteristics of spamming sites based on diversion from
power laws are presented in [12]. Current tricks employed
by spammers are detailed in [19]. An analysis of the popular
PageRank method employed by many search engines today
and ways to maximize it in a spamming network is described
in [5]. TrustRank, a modification to the PageRank to take
into account the evaluations of a few seed pages by human
editors, employees of a search engine, is presented in [20].
Techniques for identifying automatically link farms of spam
pages will be presented in [42].

A comprehensive treatment on social networks is presented
in [41]. The connection between the Web and social net-
works was explicitly noted in [30, 36] and implicitly used

75



S |VG| |EG| |VBCC | |EBCC | Trust. Untr.
U-1 1307 1544 228 465 2% 74%
U-2 1380 1716 266 593 4% 78%
U-3 875 985 97 189 0% 80%
U-4 457 509 63 115 0% 69%
U-5 716 807 105 189 0% 64%
U-6 312 850 228 763 9% 60%
U-7 81 191 32 143 0% 100%
U-8 1547 1849 200 430 5% 70%
T-1 1429 1566 164 273 56% 3%
T-2 241 247 13 17 77% 15%

Table 2: Sizes of the explored graphs and their BCC’s for eight untrustworthy (U-1 to U-8) and two trust-
worthy (T-1 and T-2) starting sites. Column |VG| contains the number of vertices that our algorithm found
in the trust neighborhood of starting site s (starting from site s and exploring in breadth-first search the
backlinks of s. Column |EG| has the number of edges in the trust neighborhood. Columns |VBCC | and |EBCC |
contains the numbers of edges of the largest biconnected component within G. The last two columns contain
the estimated percentages of trustworthy and untrustworthy sites found in the BCCs. 20% of each BCC were
evaluated using stratified sampling with stratum a site’s similarity to the starting site.

in [6, 28]. In fact, Kleinberg’s work explores many of these
connections (e.g., [27]). Identification of web communities
was explored in [29, 14]. Propagation methods for trust and
distrust are discussed in [18]. Work on topic-sensitive and
personalized web search is presented in [21, 26]. The effect
that search engines have on page popularity was discussed
in [9].

8. CONCLUSIONS
In this paper we have argued that web spam is to cyber-

world what propaganda is to society. As far as we know, this
is the first time this relationship is noted. As evidence of the
importance of this analogy, we have shown that the evolu-
tion of search engines can be simply understood as the search
engines’ response defending against spam.4 New search en-
gines are not invented every few years, as it is sometimes
reported; they are developed when researchers have a good
answer to spam.

Further, our findings suggests that anti-spamming tech-
niques can now be developed by mimicking anti-propagandistic
methods. In particular, we have presented automatic ways
of recognizing trust graphs on the web based on the bicon-
nected component around some starting site. Experimental
results from a number of such instances show our algorithm’s
ability of recognizing parts of a spamming network.

With such results, the question arises as to what one
should do once one recognizes a spamming network. This is
a question that has not attracted much attention in the past.
The default approach is that a search engine would delete
such networks from its indices [12] or might downgrade them
by some prespecified amount [20].

Both of these approaches, however, require a universal
agreement of what constitutes spam. Such an agreement
cannot exist; one person’s spam may be another person’s
treasure. Should the search engines determine what is trust-
worthy and what is not? Willing or not, they are the de facto
arbiters of what information users see [39]. As in a popular
cartoon, a kid responds to the old man who has been look-

4We do not imply here that web spam is the sole force behind
the evolution of the search engines, but that it is a dominant
one.

ing all his life for the meaning of life: “If it is not on Google
or eBay, it does not exist.”

We believe that it is the users’ right and responsibility
to decide what is acceptable for them. Their browser, their
window to cyberworld, should enhance their ability to make
this decision. User education is fundamental: People should
know how search engines work and why, and how infor-
mation appears on the web. But they should also have
a browser that can help them determine the validity and
trustworthiness of information.

The tool we described in an earlier section is a first step
in this direction. Ultimately, it would be used along with
a set of trust certificates that contains the portable trust
preferences of the user, a set of preferences that the user
can accumulate over time. Organizations that the user joins
and trusts may also add to this set. A combination of search
engines capable of providing indexed content and structure
[21], including identified neighborhoods, with a browser ca-
pable of filtering those neighborhoods through the user’s
trust preferences, would provide a new level of reliability to
the user’s information gathering. Sharing ranking decisions
with the end user will make it much harder for spammers to
tune to a single metric.

8.1 Future Work
In our experiments we also devised a simple method to

evaluate the similarity of the contents of each site to the
starting site s. After the trust neighborhood was explored,
we fetched and concatenated a few pages from each site (ran-
domly choosing from the links that appeared in the domain
URL) into a document. Then, we tried to determine the
similarity of each such document to the document of the
starting site. Similarity was determined using the tf.idf
ranking on the universe of the sites explored. We are aware
that having a limited universe of documents does not give
the best similarity results, but we wanted to get a feeling of
whether our method could further be used to distinguish be-
tween “link farms” and “mutual admiration societies”. The
initial results were encouraging (see Fig. 5), showing a higher
percentage of untrustworthy sites among those most similar
to s. Nevertheless, more work is needed in this area.
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Figure 5: The list of sites similar to the starting
site U-1 (at the end of the list). The hilited sites
are those that participate in the BCC. The number
in front of the URL corresponds to its calculated
similarity to the starting site.

Several possible extensions can be considered in this work.
Generating graphs with more backlinks per site, comparing
the evolution of trust neighborhoods over time, examining
the density of the BCCs, and finding a more reliable way
to compute similarity are some of them. We also expect
that the results would be strengthened if one considers the
triconnected (or higher) components of the trust neighbor-
hood.

9. ACKNOWLEDGEMENTS
The authors would like to thank Mirena Chausheva, Mered-

ith Beaton-Lacoste, Scott Anderson and Scott Dynes for
their valuable contributions. They would also like to thank
David “Pablo” Cohn and the anonymous referees for their
suggestions. The graphs shown in this paper were drawn
using the yEd package [43].

10. REFERENCES
[1] B. Amento, L. Terveen, and W. Hill. Does authority

mean quality? Predicting expert quality ratings of
web documents. In Proceedings of the Twenty-Third
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval.
ACM, 2000.

[2] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and
S. Raghavan. Searching the web. ACM Transactions
on Internet Technology, 1(1):2–43, June 2001.

[3] K. Bharat, A. Z. Broder, J. Dean, and M. R.
Henzinger. A comparison of techniques to find
mirrored hosts on the WWW. Journal of the
American Society of Information Science,
51(12):1114–1122, 2000.

[4] K. Bharat, B.-W. Chang, M. R. Henzinger, and
M. Ruhl. Who links to whom: Mining linkage between
web sites. In Proceedings of the 2001 IEEE
International Conference on Data Mining, pages
51–58. IEEE Computer Society, 2001.

[5] M. Bianchini, M. Gori, and F. Scarselli. PageRank
and web communities. In Web Intelligence Conference
2003, Oct. 2003.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[7] A. Broder. A taxonomy of web search. SIGIR Forum,
36(2):3–10, 2002.

[8] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Comput. Networks,
33(1-6):309–320, 2000.

[9] J. Cho and S. Roy. Impact of search engines on page
popularity. In WWW 2004, May 2004.

[10] T. S. Corey. Catching on-line traders in a web of lies:
The perils of internet stock fraud. Ford Marrin
Esposito, Witmeyer & Glesser, LLP, May 2001.
http://www.fmew.com/archive/lies/.

[11] G. Cybenko, A. Giani, and P. Thompson. Cognitive
hacking: A battle for the mind. Computer,
35(8):50–56, 2002.

[12] D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics. In WebDB2004, June 2004.

[13] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A
large-scale study of the evolution of web pages. In

77



Proceedings of the twelfth international conference on
World Wide Web, pages 669–678. ACM Press, 2003.

[14] G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee.
Self-organization of the web and identification of
communities. IEEE Computer, 35(3):66–71, 2002.

[15] I. for Propaganda Analysis. How to detect
propaganda. Propaganda Analysis, 1(2), 1937.

[16] Google. The Google API.
http://www.google.com/apis/.

[17] L. Graham and P. T. Metaxas. “Of course it’s true; i
saw it on the internet!”: Critical thinking in the
internet era. Commun. ACM, 46(5):70–75, 2003.

[18] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of trust and distrust. In WWW 2004,
May 2004.

[19] Z. Gyongui and H. Garcia-Molina. Web spam
taxonomy. Technical Report TR 2004-25, Stanford
University, 2004.

[20] Z. Gyongui, H. Garcia-Molina, and J. Pedersen.
Combating web spam with TrustRank. In VLDB
2004, Aug. 2004.

[21] T. H. Haveliwala. Topic-sensitive pagerank. In
Proceedings of the eleventh international conference on
World Wide Web, pages 517–526. ACM Press, 2002.

[22] M. R. Henzinger. Hyperlink analysis for the web.
IEEE Internet Computing, 5(1):45–50, 2001.

[23] M. R. Henzinger, R. Motwani, and C. Silverstein.
Challenges in web search engines. SIGIR Forum,
36(2):11–22, 2002.

[24] M. Hindman, K. Tsioutsiouliklis, and J. Johnson.
Googlearchy: How a few heavily-linked sites dominate
politics on the web. In Annual Meeting of the Midwest
Political Science Association, April 3-6 2003.

[25] L. Introna and H. Nissenbaum. Defining the web: The
politics of search engines. Computer, 33(1):54–62,
2000.

[26] G. Jeh and J. Widom. Scaling personalized web
search. In Proceedings of the twelfth international
conference on World Wide Web, pages 271–279. ACM
Press, 2003.

[27] J. Kleinberg. The small-world phenomenon: an
algorithm perspective. In STOC ’00: Proceedings of
the thirty-second annual ACM symposium on Theory
of computing, pages 163–170. ACM Press, 2000.

[28] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[29] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the Web for emerging
cyber-communities. Computer Networks (Amsterdam,
Netherlands: 1999), 31(11–16):1481–1493, 1999.

[30] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. The web and social networks. IEEE
Computer, 35(11):32–36, 2002.

[31] A. M. Lee and E. B. Lee(eds.). The Fine Art of
Propaganda. The Institute for Propaganda Analysis.
Harcourt, Brace and Co., 1939.

[32] C. A. Lynch. When documents deceive: trust and
provenance as new factors for information retrieval in
a tangled web. J. Am. Soc. Inf. Sci. Technol.,
52(1):12–17, 2001.

[33] M. Marchiori. The quest for correct information on
the web: hyper search engines. Comput. Netw. ISDN
Syst., 29(8-13):1225–1235, 1997.

[34] M. L. Maulding. Lycos: Design choices in an internet
search service. IEEE Expert,
January-February(12):8–11, 1997.

[35] G. Pringle, L. Allison, and D. L. Dowe. What is a tall
poppy among web pages? In Proceedings of the
seventh international conference on World Wide Web
7, pages 369–377. Elsevier Science Publishers B. V.,
1998.

[36] P. Raghavan. Social networks: From the web to the
enterprise. IEEE Internet Computing, 6(1):91–94,
2002.

[37] G. Salton. Dynamic document processing. Commun.
ACM, 15(7):658–668, 1972.

[38] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[39] M. Totty and M. Mangalindan. As google becomes
web’s gatekeeper, sites fight to get in. In Wall Street
Journal CCXLI(39), February 26 2003.

[40] A. Vedder. Medical data, new information
technologies and the need for normative principles
other than privacy rules. In Law and Medicine. M.
Freeman and A. Lewis (Eds.), (Series Current Legal
Issues), pages 441–459. Oxford University Press, 2000.

[41] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, 1994.

[42] B. Wu and B. Davison. Identifying link farm spam
pages. In WWW 2005, May 2005.

[43] yWorks. yEd – java graph editor, v. 2.2.1.
http://www.yworks.com/en/products yed about.htm.

78


	gyongyi.pdf
	bifet.pdf
	metaxas.pdf
	baeza-yates.pdf
	Introduction
	Previous Work
	Impact of Collusion in Pagerank
	Experiments with a Synthetic Web Graph
	Collusion via a complete sub-graph
	Collusion via a partial sub-graph
	Other collusion strategies

	Experiments with a Real Web Graph
	Conclusions and Future Work

	wu.pdf
	adali.pdf
	mishne.pdf
	benczur.pdf
	Introduction
	Our method: Where does your PageRank come from?
	Related work

	Preliminaries
	Algorithm
	Global properties of the Web graph
	Phase 2: Penalty generation

	Experiments
	Data set
	Results

	Conclusions
	Acknowledgement




