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ABSTRACT
We perform a statistical analysis of a large collection of Web
pages, focusing on spam detection. We study several met-
rics such as degree correlations, number of neighbors, rank
propagation through links, TrustRank and others to build
several automatic web spam classifiers. This paper presents
a study of the performance of each of these classifiers alone,
as well as their combined performance. Using this approach
we are able to detect 80.4% of the Web spam in our sample,
with only 1.1% of false positives.

1. INTRODUCTION
The term “spam” has been commonly used in the In-

ternet era to refer to unsolicited (and possibly commercial)
bulk messages. The most common form of electronic spam
is e-mail spam, but in practice each new communication
medium has created a new opportunity for sending unso-
licited messages. There are many types of electronic spam
nowadays including spam by instant messaging (spim), spam
by internet telephony (spit), spam by mobile phone, by fax,
etc. The Web is not absent from this list.

The request-response paradigm of the HTTP protocol makes
it impossible for spammers to actually “send” pages directly
to the users, so the type of spam that is done on the Web
takes a somewhat different form than in other media. What
spammers do on the Web is to try to deceive search engines,
a technique known as spamdexing.

1.1 Web spam
The Web contains numerous profit-seeking ventures that

are attracted by the prospect of reaching millions of users at
a very low cost. A large fraction of the visits to a Web site
originate from search engines, and most of the users click on
the first few results in a search engine. Therefore, there is an
economic incentive for manipulating search engine’s listings
by creating pages that score high independently of their real
merit. In practice such manipulation is widespread, and
in many cases, successful. For instance, the authors of [9]
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report that “among the top 20 URLs in our 100 million
page PageRank calculation (. . . ) 11 were pornographic, and
these high positions appear to have all been achieved using
the same form of link manipulation”.

One suitable way to define Web spam is any attempt to
get “an unjustifiably favorable relevance or importance score
for some web page, considering the page’s true value” [17].
There is a large gray area between “ethical” Search Engine
Optimization (SEO) and “unethical” spam. SEO services
range from ensuring that Web pages are indexable by Web
crawlers, to the creation of thousands or millions of fake
pages aimed at deceiving search engine ranking algorithms.
Our main criteria to decide in borderline cases is the per-
ceived effort spent by Web authors on providing good con-
tent, versus the effort spent on trying to score high in search
engines.

In all cases, the relationship between a Web site adminis-
trator trying to rank high on a search engine and the search
engine administrator is an adversarial relationship in a
zero-sum game. Every undeserved gain in ranking by the
web site is a loss of precision for the search engine. Fortu-
nately, from the point of view of the search engine, “victory
does not require perfection, just a rate of detection that al-
ters the economic balance for a would-be spammer” [21].

There are other forms of Web spam that involve search
engines. We point out that we do not consider advertising
spam, which is also an issue for search engines that involves
clicks and ads.

1.2 Topological spam (link spam)
A spam page or host is a page or host that is used

for spamming or receives a substantial amount of its score
from other spam pages. There are many techniques for Web
spam [17], and they can be broadly classified into content
(or keyword) spam and link spam.

Content spam includes changes in the content of the
pages, for instance by inserting a large number of keywords [6,
8]. In [21], it is shown that 82-86% of spam pages of this
type can be detected by an automatic classifier. The fea-
tures used for the classification include, among others: the
number of words in the text of the page, the number of hy-
perlinks, the number of words in the title of the pages, the
compressibility (redundancy) of the content, etc.

Unfortunately, it is not always possible to detect spam by
content analysis, as some spam pages only differ from nor-
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Figure 1: Schematic depiction of the neighborhood
of a page participating in a link farm (left) and a
normal page (right).

mal pages because of their links, not because of their con-
tents. Many of these pages are used to create link farms.
A link farm is a densely connected set of pages, created ex-
plicitly with the purpose of deceiving a link-based ranking
algorithm. Zhang et. al [26] call this collusion, and define
it as the “manipulation of the link structure by a group of
users with the intent of improving the rating of one or more
users in the group”.

A page that participates in a link farm, such as the one
depicted in Figure 1, may have a high in-degree, but lit-
tle relationship with the rest of the graph. Heuristically,
we call spamming achieved by using link farms topological
spamming. In particular, a topological spammer achieves
its goal by means of a link farm that has topological and
spectral properties that statistically differ from those exhib-
ited by non spam pages. This definition embraces the cases
considered in [13], and their method based on “shingles” can
be also applied in detecting some types of link farms (those
that are dense graphs).

Link-based and content-based analysis offer two orthog-
onal approaches. We think that these approaches are not
alternative and should probably be used together.

On one hand, in fact, link-based analysis does not cap-
ture all possible cases of spamming, since some spam pages
appear to have spectral and topological properties that are
statistically close to those exhibited by non spam pages. In
this case, content-based analysis can prove extremely useful.

On the other hand, content-based analysis seems less re-
silient to changes in spammers strategies, in much the same
way that content-based techniques for detecting email spam-
ming are. For instance, a spammer could copy an entire Web
site (creating a set of pages that may be able to pass all tests
for content spam detection) and change a few out-links in
every page to point to the target page. This may be a rel-
atively inexpensive task to perform in an automatic way,
whereas creating, maintaining, reorganizing a link farm, pos-
sibly spanning more than one domain, is economically more
expensive.

1.3 Our contribution
In [3] we used Truncated PageRank (studied in section

3.4) and probabilistic estimation of the number of neighbors
(studied in section 3.5) to build an automatic classifier for
link spam using several link-based features. In this paper,
we are more focused on investigating which (combinations
of) features are good for spam detection, and we try to build
classifiers that can achieve high precision by using a small
set of features.

Table 1: Summary of the performance of the differ-
ent metrics, the ranges in the error rate correspond
to a simple classifier with a few rules, and to a more
complex (but more precise) classifier.

Detection False
Section Metrics rate positives

3.1 Degree (D) 73-74% 2-3%
3.2 D + PageRank (P) 74-77% 2-3%
3.3 D + P + TrustRank 77% 2-3%
3.4 D + P + Trunc. PageRank 77-78% 2%
3.5 D + P + Est. Supporters 78-79% 1-2%
3.6 All attributes 80-81% 1-3%

We are also including several metrics that we have not
considered before for this type of classifier: we test in our
collection TrustRank [18], and we propose the use of degree-
degree correlations, edge-reciprocity and host-based counts
of neighbors. The performance of the different classifiers we
build in this paper is summarized in Table 1.

The results obtained using all the selected attributes are
comparable to those achieved by state-of the art content
analysis for Web spam detection [21]. Again, we recall that
content-based analysis is orthogonal to the approach we con-
sider, and it is likely that the combination of these tech-
niques might prove effective.

The next section introduces the algorithmic framework
and the data set we used. Section 3 presents the different
metrics. The last section presents our conclusions.

2. FRAMEWORK
This section describes the type of algorithms we are in-

terested in, and the data set we are using to evaluate the
effectiveness of the different metrics for spam detection.

2.1 Web graph algorithms
We view our set of Web pages as a Web graph, that

is, a graph G = (V, E) in which the set V corresponds to
Web pages belonging to a subset of the Web, and every link
(x, y) ∈ E corresponds to a hyperlink from page x to page
y in the collection. For concreteness, the total number of
nodes N = |V | is in the order of 1010 [15], and the typical
number of links per Web page is between 20 and 30.

Given the large/huge size of typical data sets used in
Web Information Retrieval, complexity issues play a cru-
cial role. These impose severe restrictions on the computa-
tional and/or space complexity of viable algorithmic solu-
tions. A first approach to modeling these restrictions may
be the streaming model of computation [19]. However,
the restrictions of the classical stream model are too severe
and hardly compatible with the problems we are interested
in.

In view of the above remarks, we decided to restrict to
algorithmic solutions whose space and time complexity is
compatible with the semi-streaming model of computa-
tion [10, 7]. This implies a semi-external memory con-
straint [24] and thus reflects many significant constraints
arising in practice. In this model, the graph is stored on
disk as an adjacency list and no random access is possible,
i.e., we only allow sequential access.

In particular, we assume that we have O(N log N) bits
of main (random access) memory, i.e., in general there is



enough memory to store some limited amount of data about
each vertex, but not to store the links of the graph in main
memory. We impose a futher constraint, i.e., the algorithm
should perform a small number of passes over the stream
data, at most O(log N).

We assume no previous knowledge about the graph, so
we do not know a priori if a particular node is suspicious
of being a spam or not. For this reason, there are some
semi-streamed algorithms on a Web graph that we cannot
use for Web spam detection in our framework. If we have
to compute a metric which assigns a value to every vertex,
e.g. a score, we cannot of course afford to run this algorithm
again for every node in the graph, due to the large size of
the data set.

As an example, suppose we want to measure the centrality
of nodes. If we use the streamed version of the standard
breadth-first search (BFS) algorithm, we are not complying
with this requirement, since the outcome would be a BFS
tree for a specific node, which is not enough for computing
the centrality of all the nodes in the graph. Conversely, an
algorithm such as PageRank computes a score for all nodes
in the graph at the same time.

The general sketch of the type of semi-streamed graph
algorithms we are interested, is shown in Figure 2.

Require: graph G = (V, E), score vector S
1: INITIALIZE(S)
2: while not CONVERGED do
3: for src : 1 . . . |V | do
4: for all links from src to dest do
5: COMPUTE(S, src, dest)
6: end for
7: end for
8: POST PROCESS(S)
9: end while

10: return S

Figure 2: Generic link-analysis algorithm using a
stream model. The score vector S represents any
metric, and it must use O(N log N) bits. The number
of iterations should be O(log N) in the worst case.

2.2 Data set
We use a set of pages from the .uk domain, downloaded in

2002 by the Dipartimento di Scienze dell’Informazione, Uni-
versità degli studi di Milano. These collections are publicly
available at http://law.dsi.unimi.it/.

The collection has 18.5 million pages located on 98,452
different hosts. Due to the large size of this collection, we
decided to classify entire hosts instead of individual pages.
This increases the coverage of the sample, but introduces
errors as there are some hosts that consist of a mixture of
spam pages and legitimate contents.

We manually classified a sample of 5,750 hosts (5.9% of
the hosts). For every host, we inspected a few pages manu-
ally and looked at the list of pages collected by the crawler.
Whenever we found a link farm inside the host, we classified
the entire host as spam.

As the amount of spam compared to normal hosts is rela-
tively small, and since we want to focus on the most “dam-
aging” types of spam, we biased our sampling towards hosts
with high PageRank. This is the same approach taken by

other researchers in Web spam detection [4, 18]. In order
to do this, our sample includes the top 200 hosts with the
higher PageRank in their home page, with the higher over-
all PageRank and with the larger number of pages. Other
hosts were added by classifying all the top 200 pages by
hostname length, as several spammers tend to create long
names such as “www.buy-a-used-car-today.example”. For
the same reason, we searched for typical spamming terms
in the host names, and we classified all the hosts with do-
main names including keywords such as mp3, mortgage, sex,
casino, buy, free, cheap, etc.

We discarded from the sample the hosts that no longer
were available (about 7%), and classified the rest in one of
the following three classes:

Spam (16%): The host is clearly a link farm; or it is
spamming by using several keywords in the host, directory
or file names; or it includes no content apart from links to
a target page or host.

Normal (81%): The host is clearly not a link farm, but
a normal site (in the jargon of e-mail spam detection, non-
spam items are sometimes called “ham”).

Suspicious (3%): Borderline cases, including illegal busi-
ness (on-line gambling, pharmaceuticals without prescrip-
tion) and pornography, as they are usual customers of link
farms. We also included in this category sites that almost
(but not entirely) provide content copied from other sources
plus advertising, affiliate networks, advertising servers, and
groups of entire sites that share the same template with little
added information.

Table 2 shows the number of hosts and pages in each class.
Note that as the sample is biased toward spam pages, it
cannot be used to infer the overall prevalence of Web spam
in this collection. Also, given that we biased our sampling
towards hosts with a large number of pages, our sample has
only 5.9% of the hosts but covers about 5.8 million pages or
30% of the pages in the collection.

Table 2: Relative sizes of the classes in the manually-
classified sample. The last row gives the fraction of
classified hosts and pages over the entire collection.
Class Hosts Pages

Spam 840 16% 329 K 6%
Normal 4,333 81% 5,429 K 92%
Suspicious 171 3% 118 K 2%
Total 5,344 (5.8%) 5,877 K (31.7%)

For the class labels provided to the algorithms in the auto-
matic classification experiments, we adopted a conservative
approach and included the suspicious hosts in the normal
class.

One final remark about the data set is in order. The Web
is a moving target and no spam research paper can have a
spam classification whose Web content and structure (links)
date to the same time as when the training set classification
was done. This can negatively affect the results returned by
any classifier for two main reasons:
- A site may not be spam today but it may have been spam
in the past. In this case there is the risk of wrong detection
of this site as spam and hence the number of false positives
will increase.

http://law.dsi.unimi.it/


- A site may be spam today but may not have been in the
past. In this case we may not detect the site as spam and
hence the number of false negatives will increase.

So, regardless of the technique used, our results may un-
derestimate the false positives and negatives (so in both
cases these are lower bounds). This implies that the de-
tection rate we are giving is an upper bound.

2.3 Automatic classification
This paper describes several link-based features that are

used to build automatic classifiers. We used the Weka [25]
implementation of decision trees: binary trees in which each
internal node is an inequality (for instance: “if feature A
is less than 10, and feature B is greater than 0.2, then the
host is spam”). Describing here the algorithm for building
automatically these classifiers is not possible due to space
limitations, for a description see [25].

The evaluation of the classifiers was performed by a ten-
fold cross-validation of the training data. The data is first
divided into 10 approximately equal partitions, then each
part is held out in turn for testing, and the classifier is
trained using the remaining 9 folds. The overall error es-
timate is the average of the 10 error estimates on the test
folds.

We also used boosting [12], which builds 10 different clas-
sifiers, assigning a different weight to each element after each
classification, depending on whether the element was cor-
rectly classified or not. The resulting classifier is a linear
combination of the individual weighted classifiers.

For each set of features we build two classifiers. We first
limit the number of rules, by imposing a lower bound on the
number of hosts in each leaf of the decision tree (this is the
parameter M in the implementation of Weka). In our case,
M = 30 hosts, roughly 5% of them. We then build another
classifier by using no pruning and generating as many rules
as possible as long as there are at least M = 2 hosts per
leaf.

Evaluation: the error metrics for the evaluation are based
on precision and recall [2] for the spam detection task. The
main measures we use are:

Detection rate =
# of spam sites classified as spam

# of spam sites

False positives =
# of normal sites classified as spam

# of normal sites
.

The full list of features we used is provided in the ap-
pendix. Note that neither the length of the host names, nor
their keywords, nor the number of pages were included as
features for the automatic classifiers.

3. METRICS
Fetterly et al. [11] hypothesized that studying the dis-

tribution of statistics about pages could be a good way of
detecting spam pages, as “in a number of these distribu-
tions, outlier values are associated with web spam”. In this
section we consider several link-based metrics, whose com-
putation uses algorithms that are feasible for large-scale Web
collections. These are not all possible statistics that can be
computed, for a survey of Web metrics, see [5].

From pages to hosts. All the metrics in this section
are metrics about individual Web pages. To apply them to

sites we measured them for the home page of the site (this is
the page in the root directory, or the page with the shortest
file name on each host). We computed these metrics for the
page with the maximum PageRank. In our sample, these
pages are the same in only 38% of the cases, so it is rather
common that the highest ranked page on a site is not the
home page.

Actually, in 31% of the normal hosts these pages are the
same, while for the spam hosts in 77% of the cases the pages
are the same. In a normal Web site, the pattern of the
linking to the pages in the host are not controlled by its
owner, so even if the home page is more “visible”, any page
has a certain chance of becoming popular. In the case of
a spam host, we are assuming that the spammer controls a
large fraction of the in-links, so he has an incentive to try to
boost its home page instead of an arbitrary page inside the
host.

3.1 Degree-based measures
The distribution of in-degree and out-degree can be ob-

tained very easily doing a single pass over the Web graph.
In Figure 3 we depict the histogram of this metric over the
normal pages and the spam pages. In this section we present
several graphs such as Figure 3, in which the histogram is
shown with bars for the normal pages and with lines for the
spam pages. Both histograms are normalized independently,
and the y-axis represents frequencies.
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Figure 3: Histogram of the degree of home pages.

We have also included a parameter δ representing how
different the histograms are. The value δ ∈ [0, 1] is based
on the Kolmogorov-Smirnov test to verify if two distribu-
tions are the same, and is the maximum difference of the
cumulative distribution functions (not shown here due to
lack of space). The larger the value, the more different the
distributions are.

In the case of in-degree we are using logarithmic binning,
and the distribution seems to follow a power-law for normal
pages, as the number of elements in each bin are similar. In
the case of spam hosts, there is a large group of about 40%
of them that have an in-degree in a very narrow interval.
Something similar happens in the diagram of out-degree,
but the difference between normal and spam pages is not as
significant.

Another degree-based metric is the edge-reciprocity,
that measures how many of the links in the directed Web
graph are reciprocal. The edge-reciprocity can be computed
easily by simultaneously scanning the graph and its trans-
posed version, and measuring the overlap between the out-
neighbors of a page and its in-neighbors.

In Figure 4 (left) we can see that the pages with maximum
PageRank of the spam hosts, tend to have abnormally low
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Figure 4: Left: histogram of the edge reciprocity
in the page with maximum PageRank. Right: his-
togram of degree/degree ratio for home pages.

reciprocity in our sample. In the case of home pages (not
shown) the difference is not very large.

The degree of the nodes induces a natural “hierarchy” that
can be used to define different classes of nodes. A network in
which most nodes are connected to other nodes in the same
class (for instance, most of the connections of highly-linked
are to other highly-linked nodes) is called “assortative”
and a network in which the contrary occurs is called “dis-
assortative”. The distinction is important from the point
of view of epidemics [16].

We measured for every host in our sample the ratio be-
tween its degree and the average degree of its neighbors (con-
sidering both in- and out-links). In Figure 4 (right) we can
see that in our collection, there is a mixing of assortative
and disassortative behavior. The home pages of the spam
hosts tend to be linked to/by pages with relatively lower in-
degree. In our case, there is a peak at 10, meaning that for
that group, their degree is 10 times larger than the degree
of their direct neighbors.

All of the measures in this section can be computed in
one or two passes over the Web graph (and the transposed
graph). Using only these attributes (17 features in total) we
build two spam classifiers, as explained in section 2. Using
them we can identify from 72.6% to 74.4% of the spam hosts
with a false positive rate from 2.0% to 3.1%.

3.2 PageRank
Let AN×N be the citation matrix of graph G, that is,

axy = 1 ⇐⇒ (x, y) ∈ E. Let PN×N be the row-normalized
citation matrix, such that all rows sum up to one, and rows
of zeros are replaced by rows of 1/N . PageRank [22] can be
described as a functional ranking [1], that is, a link-based
ranking algorithm that computes a scoring vector S of the
form:

S =
∞

X

t=0

damping(t)

N
Pt .

where damping(t) is a decreasing function of t, the lengths of
the paths. In particular, for PageRank the damping function
is exponentially decreasing, namely, damping(t) = (1−α)αt.

We plot the distribution of the PageRank values of the
home pages in Figure 5 (left). We can see a large fraction
of pages sharing the same PageRank. This is more or less
expected as there is also a large fraction of pages sharing the
same in-degree (although these are not equivalent metrics).

An interesting observation we obtained is that in the case
of home pages the distribution seems to follow a power-law
(in the graph of Figure 5 the bins are logarithmic), while
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Figure 5: Left: histogram of the PageRank in the
home page of hosts. Right: dispersion of PageRank
values in the in-neighbors of the home pages.

for the pages with maximum PageRank on each host, the
distribution seems to be log-normal. This deserves further
studying in the future.

Following an idea by Benczúr et al. [4], we studied the
PageRank distribution of the pages that contribute to the
PageRank of a given page. In [4], this distribution is studied
over a sample of the pages that point recursively to the tar-
get page (with a strong preference for shorter paths), while
here we study the distribution of the PageRank of the di-
rect in-neighborhood of a page only. The result is shown in
Figure 5 (right), and it is clear that for most of the spammers
in our sample, it is more frequent to have less dispersion in
the values of the PageRank of the in-neighbors.

Automatic classifiers built with the attributes we have
described in this section (28 features in total), can identify
from 74.4% to 77.3% of the spam hosts with a false positive
rate of 1.7% to 2.6%.

3.3 TrustRank
In [18] the TrustRank algorithm for trust propagation is

described: it starts with a seed of hand-picked trusted
nodes and then propagates their score by following links.
The intuition behind TrustRank is that a page with high
PageRank, but without relationship with any of the trusted
pages, is suspicious.

The spam mass of a page is defined as the amount of
PageRank received by that page from spammers. This quan-
tity cannot be calculated in practice, but it can be estimated
by measuring the estimated non-spam mass, which is the
amount of score that a page receives from trusted pages. For
the purpose of this paper we refer to this quantity simply as
the TrustRank score of a page.

For calculating this score, a biased random walk is car-
ried out on the Web graph. With probability α we follow
an out-link from a page, and with probability 1 − α we go
back to one of the trusted nodes picked at random. For
the trusted nodes we used data from the Open Directory
Project (available at http://rdf.dmoz.org/), selecting all
the listed hosts inside the .uk domain. As of April 2006,
this includes over 150,000 different hosts, from which 32,866
were included in our collection. Out of these, we have tagged
2,626 of them as normal hosts and 21 as spam. We removed
those spam sites from the seed set (we also made some tests
keeping them and the difference was not noticeable).

As shown in Figure 6, the score obtained by the home page
of hosts in the normal class and hosts in the spam class is
very different. Also, the ratio between the TrustRank score

http://rdf.dmoz.org/
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Figure 6: Left: histogram of TrustRank scores of
home pages. Right: histogram of the estimated rel-
ative non-spam mass.

and the PageRank (the estimated relative non-spam mass)
is also very effective for separating spam from normal pages.

Using degree correlations, PageRank and TrustRank as
attributes (35 features in total), we built classifiers with de-
tection rates from 77.0% to 77.3% and 1.8% to 3.0% of false
positives.

3.4 Truncated PageRank
In [3] we described Truncated PageRank, a link-based

ranking function that decreases the importance of neigh-
bors that are topologically “close” to the target node. In
[26] it is shown that spam pages should be very sensitive to
changes in the damping factor of the PageRank calculation;
in our case with Truncated PageRank we modify not only
the damping factor but the whole damping function.

Intuitively, a way of demoting spam pages is to consider a
damping function that removes the direct contribution
of the first levels of links, such as:

damping(t) =

(

0 t ≤ T

Cαt t > T

Where C is a normalization constant and α is the damping
factor used for PageRank. This function penalizes pages
that obtain a large share of their PageRank from the first few
levels of links; we call the corresponding functional ranking
the Truncated PageRank of a page. The calculation of
Truncated PageRank is described in detail in [3]. There
is a very fast method for calculating Truncated PageRank.
Given a PageRank computation, we can store “snapshots”
of the PageRank values at different iterations and then take
the difference and normalize those values at the end of the
PageRank computation. Essentially, this means that the
Truncated PageRank can be calculated for free during the
PageRank iterations.

Note that as the number of indirect neighbors also de-
pends on the number of direct neighbors, reducing the con-
tribution of the first level of links by this method does not
mean that we are calculating something completely different
from PageRank. In fact, for most pages, both measures are
strongly correlated, as shown in [3].

In practice, we observe that for the spam hosts in our col-
lection, the Truncated PageRank is smaller than the Page-
Rank, as shown in Figure 7 (left). There is a sharp peak
for the spam pages in low values, meaning that many spam
pages loose a large part of their PageRank when Truncated
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Figure 7: Left: histogram of the ratio between Trun-
catedPageRank at distance 4 and PageRank in the
home page. Right: maximum ratio change of the
TruncatedPageRank from distance i to distance i−1.

PageRank is used. We also found that studying the ratio of
Truncated PageRank at distance i versus Truncated Page-
Rank at distance i−1 also helps in identifying Web spam, as
shown in Figure 7 (right). A classifier using Truncated Page-
Rank, as well as PageRank and degree-based attributes (60
features in total) can identify 76.9% to 78.0% of the spam
hosts with 1.6% to 2.5% of false positives.

3.5 Estimation of supporters
Following [4], we call x a supporter of page y at distance

d, if the shortest path from x to y formed by links in E has
length d. The set of supporters of a page are all the other
pages that contribute to its link-based ranking.

A natural way of fighting link spam is to count the sup-
porters. The naive approach is to repeat a reverse breadth-
first search from each node of the graph, up to a certain
depth, and mark nodes as they are visited [20]. Unfortu-
nately, this is infeasible unless a subset of “suspicious” node
is known a priori. A method for estimating the number of
supporters of each node in the graph is described in [3] which
improves [23].

The general algorithm (described in detail in [3]) involves
the propagation of a bit mask. We start by assigning a
random vector of bits to each page. We then perform an
iterative computation: on each iteration of the algorithm,
if page y has a link to page x, then the bit vector of page
x is updated as x ← x OR y. After d iterations, the bit
vector associated to any page x provides information about
the number of supporters of x at distance ≤ d. Intuitively, if
a page has a larger number of supporters than another, more
1s will appear in the final configuration of its bit vector.

The algorithm is described in detail in [3]. In order to have
a good estimation, d passes have to be repeated O(log N)
times with different initial values, because the range of the
possible values for the number of supporters is very large.
We have observed that counting supporters from distances
d from 1 to 4 give good results in practice. We measured
how the number of supporters change at different distances,
by measuring, for instance, the ratio between the number of
supporters at distance 4 and the number of supporters at
distance 3. The histogram for the minimum and maximum
change is shown in Figure 8 (left).

This algorithm can be extended very easily to consider
the number of different hosts contributing to the ranking
of a given host. To do so, in the initialization the bit masks
of all the pages in the same host have to be made equal. In
Figure 8 (right), we plot the number of supporters at dis-
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Figure 8: Left: histogram of the minimum change in
the size of the neighborhood in the first few levels.
Right: number of different hosts at distance 4

tance 4 considering different hosts contributing towards the
ranking of the home pages of the marked hosts. We observed
anomalies in this distribution for the case of the spam pages,
and these anomalies are more evident by counting different
hosts than by counting different pages.

Considering distance 4, the estimation of supporters based
on pages (62 attributes) yields a classifier with 78.9% to
77.9% of detection rate and 1.4% to 2.5% of false positives.
If we base the estimation on hosts (67 attributes, slightly
more because in-degree is not the number of neighbors at
distance one in this case) allows us to build a classifier for
detecting 76.5% to 77.4% of the spam with an error rate
from 1.3% to 2.4%.

The detection rate is two to three percentage points lower
if distance 2 is considered, with roughly the same false pos-
itives ratio.

3.6 Everything
By combining all of the attributes we have discussed so far

(163 attributes in total), we obtained a better performance
than each of the individual classifiers. The detection rate of
the final classifier is between 80.4% and 81.4%, with a false
positive rate of 1.1% to 2.8% respectively. The first classi-
fier has 40 rules (which provides a robust classifier), while
the second classifier has 175. The performance of our best
classifier can be compared with content-based analysis [21],
which with an equivalent, unrestricted, boosted classifier,
achieves 86.2% of detection rate with 2.2% false positives
using content features.

The ten most important attributes in the complete set
were obtained by using the attribute selection mechanism
of Weka, that samples instances and consider the value of
each attribute in the nearest same-class and different-class
instance:
1. Binary variable indicating if home page is the page with
maximum PageRank of the site
2. Edge reciprocity
3. Supporters (different hosts) at distance 4
4. Supporters (different hosts) at distance 3
5. Minimum change of supporters (different hosts)
6. Supporters (different hosts) at distance 2
7. Truncated PageRank at distance 1 divided by PageRank
8. TrustRank score divided by PageRank
9. Supporters (different hosts) at distance 1
10. Truncated PageRank at distance 2 divided by PageRank

4. CONCLUSIONS AND FUTURE WORK
A first criticism of this study can be that the sample is not

uniform, but is biased towards large Web sites and highly
ranked Web pages. However, a uniform random sample in
this case is much harder to obtain, as it requires to inspect
a larger set of pages, which we can not do by ourselves at
this moment. We are currently collaborating with other re-
searchers in tagging a large uniform sample from a collection
of Web pages.

Our host-based approach also has some drawbacks. For
instance, hosts can have mixed spam/legitimate content. In
any case, we have seen that for several metrics it is impor-
tant to measure the variables in both the home page of the
host and the page with the maximum PageRank. For some
metrics only one of the two pages provides useful informa-
tion for the spam detection technique, and it is not always
the same page. Another approach could be to evaluate each
metric also by taking its average over each Web host. Fi-
nally, a better definition of Web site instead of host would
be useful; for instance, considering multi-site hosts such as
geocities.com as separated entities.

Some authors have hinted that the arms race between
search engines and spammers calls for a serious reconsid-
eration of Web search. For instance, Gori and Witten ar-
gue that “one might try to address speculative Web visibil-
ity scams individually (as search engine companies are no
doubt doing); however, the bubble is likely to reappear in
other guises” [14]. It would be interesting to try to devise
clear rules separating what is allowed and what is not al-
lowed from the point of view of a search engine, instead of
continuing playing “hide and seek” with the spammers. In
an analogy with sport competitions, this set of rules would
define a kind of “anti-doping rules” for Web sites. Our work
contributes towards this goal by suggesting that it is possible
to detect a large fraction of the spammers by analyzing link-
based metrics. Following the analogy, this could be used as
part of an “anti-doping test” for Web pages, which should
involve at least both link-based and content-based analysis.

The source code of the implementation of the algorithms
presented in this paper will be freely available under a GPL
license at http://www.dis.uniroma1.it/∼ae/ for the final
version of the paper, along with our data set of hosts and
their class labels, for repeatability of these results and fur-
ther testing of other web spam detection techniques.
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Appendix: Full List of Attributes
Included here for repeatability of the results:

Degree-based, 17 features (section 3.1)
All of the following attributes for the home page and the
page with the maximum PageRank, plus a binary variable
indicating if they are the same page:

- In-degree, out-degree, fraction of reciprocal edges
- Degree divided by degree of direct neighbors
- Average and sum of in-degree of out-neighbors
- Average and sum of out-degree of in-neighbors

PageRank, 28 features (section 3.2)
All of the above, plus the following for the home page and
the page with maximum PageRank:

- PageRank, In-degree/PageRank, Out-degree/PageRank
- Standard deviation of PageRank of in-neighbors = σ2

- σ2/PageRank

Plus the PageRank of the home page divided by the Page-
Rank of the page with the maximum PageRank.

TrustRank, 35 features (section 3.3)
PageRank attributes of section 3.2, plus the following for
the home page and the page with maximum PageRank:

- TrustRank (estimated absolute non-spam mass)
- TrustRank/PageRank, TrustRank/In-degree

Plus the TrustRank in the home page divided by the
TrustRank in the page with the maximum PageRank.

Truncated PageRank, 60 features (section 3.4)
PageRank attributes of section 3.2, plus the following for
the home page and the page with maximum PageRank:

- TruncatedPageRank(T = 1 . . . 4)
- TruncatedPageRank(T = i) / TruncatedPageRank(T =
i− 1)
- TruncatedPageRank(T = 1 . . . 4) / PageRank
- Min., max. and avg. of TruncatedPageRank(T = i) /
TruncatedPageRank(T = i− 1)

Plus the TruncatedPageRank(T = 1 . . . 4) of the home
page divided by the same value in the page with the maxi-
mum PageRank.

Estimation of supporters (section 3.5)
PageRank attributes of section 3.2, plus the following for
the home page and the page with maximum PageRank:

- Supporters at 2 . . . 4 (supporters at 1 is equal to in-degree)
- Supporters at 2 . . . 4 / PageRank
- Supporters at i / Supporters at i − 1 (for i = 1..4)
- Min., max. and avg. of: Supporters at i / Supporters at
i− 1 (for i = 1..4)
- (Supporters at i - Supporters at i − 1) / PageRank (for
i = 1..4). The quantity (Supporters at i - Supporters at
i− 1) is the number of supporters at distance exactly i.

Plus the number of supporters at distance 2 . . . 4 in the
home page divided by the same feature in the page with the
maximum PageRank.

For the estimation of supporters using hosts, the same
attributes but considering that two supporters in the same
host count as only one supporter.
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