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ABSTRACT
We investigate the usability of similarity search in fighting Web
spam based on the assumption that an unknown spam page is more
similar to certain known spam pages than to honest pages.

In order to be successful, search engine spam never appears in
isolation: we observe link farms and alliances for the sole purpose
of search engine ranking manipulation. The artificial nature and
strong inside connectedness however gave rise to successful algo-
rithms to identify search engine spam. One example is trust and
distrust propagation, an idea originating in recommender systems
and P2P networks, that yields spam classificators by spreading in-
formation along hyperlinks from white and blacklists. While most
previous results use PageRank variants for propagation, we form
classifiers by investigating similarity top lists of an unknown page
along various measures such as co-citation, companion, nearest
neighbors in low dimensional projections and SimRank. We test
our method over two data sets previously used to measure spam
filtering algorithms.

1. INTRODUCTION
With the advent of search engines web spamming appeared as

early as 1996 [7]. Identifying and preventing spam was cited as one
of the top challenges in web search engines in a 2002 paper [16].
The birth of the highly successful PageRank algorithm [29] was
indeed partially motivated by the easy spammability of the simple
in-degree count; its variants [19; 11; 15; 3; 39; 2, and many others]
proved successful in fighting search engine spam.

Spam and various means of search engine optimization seriously
deteriorate search engine ranking results; as a response, building
black and whitelist belongs to the daily routine of search engine
operation. Our goal is to extend this invaluable source of human
annotation either to automatically demote pages similar to certain
known spam pages or to suggest additional pages for the operator
to be included in the blacklist.

Recently several results has appeared that apply rank propaga-
tion to extend initial trust or distrust judgements over a small set
of seed pages or sites to the entire web. These methods are ei-
ther based on propagating trust forward or distrust backwards along
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the hyperlinks based on the idea that honest pages predominantly
point to honest ones, or, stated the other way, spam pages are back-
linked only by spam pages. We argue that compared to unidirec-
tional propagation methods, the initial labels are better utilized if
we apply similarity search techniques, which involve a bidirec-
tional backward and forward step.

In this paper we concentrate on spreading trust and distrust infor-
mation from a seed set with the help of hyperlink based similarity
measures. Our main goal is to identify features based on similar-
ities to known honest and spam pages that can be used to classify
unknown pages. We demonstrate the usability of co-citation, Com-
panion [8], SimRank [18] and variants [10] as well as the singular
value decomposition of the adjacency matrix in supervised spam
learning.

Hyperlink based similarity to spam versus honest pages is com-
parable to trust and distrust propagation while giving a natural com-
bination of backward and forward propagation. Given a link farm
alliance [13] with one known target labeled as spam, similarity
based features will automatically label other targets as spam as
well.

As the main result of our paper, we show that over our data set
of the .de domain as well as the.ch domain data in courtesy
of the search.ch engine [33] similarity based single features
perform better than trust or distrust propagation based single fea-
tures at higher recall values. Ironically, the easiest-to-manipulate
co-citation performs best; as an alternate somewhat more robust
against manipulations but performing similarly well we suggest
Companion [8]. Our results are complementary to the recent re-
sults of [2] based on link structure and of [27] based on content
analysis. We leave classification based on the combination of fea-
tures as future work.

2. RELATED RESULTS
Next we survey related results both for hyperlink based spam de-

tection and similarity search. Recently very large number of results
appeared to fight spam; we list just the most relevant ones and point
to references therein.

2.1 PageRank based trust and distrust propa-
gation

When using trust and distrust information, we may propagate
trust forward to pages pointed by trusted ones or distrust backward
to pages that point to spam. In previous results we see all vari-
ants: TrustRank [15, 39] propagates trust forward, BadRank [31,
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9] distrust backward; [38] uses a combination. We describe these
important predecessors of our work next.

As the first trust propagation method against link spam, Gyöngyi
et al. [15] show that spam sites can be pushed down in PageRank
ordering if we personalize on a few trusted hub sites. Their method
is semi automatic, the trusted 180 seed pages were carefully hand
picked from 1250 good hub pages distilled automatically using In-
verse PageRank. Notice that TrustRank requires a very carefully
selected seed set that we cannot provide in our experiment. Wu
et al. [39] describes an improvement of TrustRank by reducing the
bias induced by the seed set. Gyöngyi et al. [12] recognize link
spam by comparing the TrustRank and PageRank values.

Trust and distrust propagation in trust networks originates in
Guha et al. [11] for trust networks; Wu et al. [38] show its ap-
plicability for Web spam classification. As noticed by [11] distrust
propagation is more problematic that that of trust. Although for a
different data type (trust/distrust among Epinions reviewers), they
raise the question of interpreting the distrust of a distrusted party.
While [38] emphasizes the difference between identifying prefer-
ences of a single user and a global notion of trust over the Web,
they also require a combination of trust and distrust propagation to
achieve best results.

As an earlier result, [19] EigenTrust is PageRank with weights
that are trust values. Another method [25] penalizes the bicon-
nected component of a spam page in a subgraph obtained by back-
ward distrust propagation.

2.2 Similarity search, HITS and spam
Several link-based algorithms were designed to evaluate node-

to-node similarities in networks; we refer to [23] for an exhaustive
list of the available methods ranging from co-citation to more com-
plex measures such as max-flow/min-cut-based similarities of [24]
in the vicinity graph of the query. Closest to our notions of link
based similarity is co-citation already used in [11] as an elemen-
tary step of trust propagation.

Dean and Henzinger [8] describe the Companion algorithm that
is reported to outperform co-citation in finding related pages. Their
algorithm computes the authority scores by the HITS algorithm
[20] in the vicinity of the query page.

HITS itself is known to be vulnerable to spam and in particular
to the so-called tightly knit community (TKC) effect. Vulnerabil-
ity to spam, however, makes HITS a good candidate to actually
detect spam when run in the neighborhood of known spam pages
that we explore in our paper. An overview of the theoretical re-
sults underlying the TKC effect is given in Section 7 of [22] and
the references therein that indicate a very weak TKC-type spam re-
sistance of HITS and a somewhat better but still unsatisfying one
of PageRank.

Another example of HITS and spam is the result of Wu and Davi-
son [37]. Unlike our approach of exploiting the spam sensibility of
HITS in prediction, they make HITS spam resistant by identifying a
seed set of link farm pages based on the observation that the in- and
out-neighborhood of link farm pages tend to overlap. Then the seed
set of bad pages is iteratively extended to other pages which link to
many bad pages; finally the links between bad pages are dropped.
Experiments show that a simple weighted in-degree scheme on the
modified graph yields significantly better precision for top ten page
hit lists than the Bharat-Henzinger [5] HITS variant.

Additionally we mention the first example that gives anecdo-
tal evidence for the usability of similarities in hyperlink structure
to identify spam. Amitay et al. [1] extracted features based on
the linkage patterns of web sites and trained a decision tree and
a Bayesian classifier to classify each site to one of the 8 prede-

fined functional categories. A cosine metric based clustering of the
feature space produced a decent amount clusters whose members
appeared to belong to the same spam ring. As it was not the origi-
nal goal of their research, no results were published on classifying
sites as spam or non-spam.

Finally we remark that identifying spam pages is somewhat anal-
ogous to classifying web documents into multiple topics. Several
results [32, and the references therein] demonstrate that classifica-
tion accuracy can be significantly increased by taking into account
the class labels assigned to neighboring nodes. In accordance with
our experiments, Qi and Davison [32] found that most of the im-
provement comes from the neighborhood defined by co-citation.

2.3 Spam data sets and methodology
Before describing our measurements, we elaborate on the hard-

ness of comparing results of different authors and data sets. We
show preliminary results indicating the difficulty of correctly la-
beling spam by human evaluators as well as compare the different
availability of data sets.

While we believe that identifying email spam and certain types
of web content spam by human inspection is relative easy and au-
tomated methods cannot, in any case, perform as good as human
judgement. Search engine spam, however, is much harder to iden-
tify. Györgyi and Garcia-Molina [14] list a few methods that con-
fuse users including term hiding (background color text); cloaking
(different content for browsers and search engine robots) and redi-
rection; some of these techniques can still be found by inspecting
the HTML code within the page source. A few examples of the
.de domain are given in our previous result [3].

In contrast to the hardness of manual spam classification, apart
from our previous result [3] we have no knowledge of investiga-
tions for the reliability of the manual labels. In our experiment [3]
over the.de domain we report a very poor pairwiseκ = 0.45
[6] over the 100 pairs of URLs with judgements by two different
evaluators. The majority of disagreements could be attributed to
different rating of pages in affiliate programs and certain cliques.
This shows that assessing link spam is nontrivial task for humans
as well. Gyöngyi et al. [15] mention “using an author as an evalua-
tor raises the issue of bias in the results” and emphasize the exper-
tise needed for search engine operators that, in our work, have no
access. They also describe the hardness of the task as “manual eval-
uations took weeks: checking a site involves looking at many of its
pages and also the linked sites to determine if there is an intention
to deceive search engines.”

Results on Web spam are in general based on data that needs
careful analysis to replicate and compare. The.uk crawl [2] that
we plan to use in future work is not yet publicly available. Some
of the data such as the MSN crawl [27] is proprietary. Gyöngyi
et al. [15] use an AltaVista crawl together with a proprietary tool
for contracting pages within the same site to a single node prior to
PageRank computation that we only mimic over the.de domain.
While the Stanford WebBase [39] contains pages that are outdated,
manual classification is possible with care through the Wayback
Machine [39]. This is also true for our 2004.de crawl [36] even
though we use a 2005 manual classification [3].

Various top-level or otherwise selected domains may have dif-
ferent spamming behavior; Ntoulas et al. [27] give an invaluable
comparison that show major differences among national domains
and languages of the page. For the.de domain their findings agree
with our 16.5% [3] while for the.uk domain together with Bec-
chetti et al. [2] they report approximately 6%; the latter measure-
ment also reports 16% of sites as spam over.uk .

We also mention the importance of giving more weight to pages



of high rank. Similar to our method, [15] uses a stratified random
sample based on PageRank buckets for evaluation. Notice that a
uniform sample would consist of mostly very low rank pages that
would give little information about top ranked pages most impor-
tant in search engine applications.

3. THE SIMILARITY BASED SPAM DETEC-
TION ALGORITHMS

In our experiments we use the four similarity measures co-citation,
SimRank [18], Companion [8] and singular vectors and we suggest
the applicability of further SimRank variants. In this section we
briefly introduce notation and the efficient algorithms [10, 35] that
we use. We give special importance to algorithms with modest
hardware requirements; our experiments ran on a commodity PC.

Similarity based spam prediction is less straightforward than trust
and distrust propagation that directly ranks a page as honest or
spam. Before describing the algorithms we hence describe our
evaluation method. For a given unknown hostu, our algorithm
computes the similarity top list ofu and makes a prediction based
on the known spam and honest hosts in this list. For each similarity
measure we extract four different features from the sizek similarity
top list of u. Let the top list containh honest ands spam pages of
the evaluation sample; in generalh + s < k. Let the sum of the
similarities of these pages bes∗ andh∗, respectively. We define
our features as follows.

• Spam Ratio (SR): fraction of the number of spam within la-
beled spam and honest pages,s/(s + h).

• Spam over Non-spam (SON): number of spam divided by
number of honest pages in the top list,s/h.

• Spam Value Ratio (SVR): sum of the similarity values of
spam pages divided by the total similarity value of labeled
spam and honest pages under the appropriate similarity func-
tion, s∗/(s∗ + h∗).

• Spam Value over Non-spam Value (SVONV): similarity value
sum for spam divided by same for honest,s∗/h∗.

Given the above values, we may impose a threshold and predict the
unknown input page spam if the measure is above the prescribed
threshold. For different thresholds we obtain predictions of differ-
ent quality; by decreasing its value we increase recall and likely but
not necessarily decrease precision. For threshold 0 we predict all
pages as spam with recall 1 and precision equal to the spam fraction
in the data.

3.1 SimRank
Let us consider the web as a graph over hosts by contracting

all individual pages that share a common fully qualified host name
into the same vertex as in [15]. Let there beN vertices and let
hyperlinks define directed edgesE between them. Given nodev
we denote its in- and out-degree byd+(v) andd−(v), respectively.

ThePageRankvectorp = (p1, . . . ,pN ) is defined as the solution
of the following equation [29]

pu = (1− c) ·
X

(v,u)∈E

pv/d+(v) + c · ru , (1)

wherer = (r1, . . . , rN ) is the teleportation distribution andc is
the teleportation probability with a typical value ofc ≈ 0.15. We
get the PageRank if we set allri to 1/N ; for generalr we get
PageRank personalized onr.

Jeh and Widom [18] define SimRank by the following equation
very similar to the PageRank power iteration: initially Sim(0)(u1, u2) =
1 if u1 = u2 and0 otherwise and then

Sim(i)(u1, u2) =

(
(1− c) ·

P Sim(i−1)
(v1,v2)

d−(u1)·d−(u2)
if u1 6= u2

1 if u1 = u2,
(2)

where the summation is for all pairs(v1, u1) ∈ E, (v2, u2) ∈ E.
SimRank is the multi-step generalization of co-citation in the same
way as PageRank generalizes in-degree.

Given a Web page we predict spam by co-citation and SimRank
based on the similarity top-list over the entire host graph. In the
case of co-citation, the list includes all pages that have a common
back-link; ranking is based on the number of such pages. We com-
pute co-citation by keeping the host graph in internal memory.

SimRank power iterations as in (2) are infeasible since they re-
quire quadratic space; we use the algorithm of [35] instead, with
additive errorε = 0.001 and 10 iterations. We use all non-zeroes
as the top list with sizek. Since in internal steps the algorithm
rounds down to multiples of the error parameter, the choice ofε
determines the value ofk.

Fogaras and Rácz [10] describe two variants PSimRank and XJac-
card by modifying similarity propagation in the above equation
(2); they give randomized approximation algorithms and measure
PSimRank as better predictor of topical similarity than SimRank.
Additionally, the algorithm we use for SimRank can very easily be
modified to take self-similarities into account by relaxing the con-
dition Sim(u1, u2) = 1 and making a page more similar to itself if
similar pages point to it. This modified measure may serve well for
penalizing nepotism; we plan to test variants of self-similarity and
PSimRank in future work.

3.2 Companion and SVD
The Singular Value Decomposition (SVD) of a rankρ matrix

A ∈ Rm×n is given byA = UΣV T with U ∈ Rm×ρ, Σ ∈ Rρ×ρ

and V ∈ Rn×ρ whereΣ is a positive diagonal matrix with the
singular values in the diagonal. By the Eckart-Young theorem the
best rank-t approximation ofA with respect to both the Frobenius
and spectral norms isAt = UtΣtV

T
t , whereUt ∈ Rm×t and

Vt ∈ Rn×t contain the firstt columns ofU andV and the diagonal
Σt ∈ Rt×t contains firstt entries ofΣ.

We use SVD for nearest neighbor search after a low dimensional
projection of the adjacency matrix of the host graph. We represent
hostu by row u of VtΣt and measure similarity as the Eucledian
distance in thist dimensional space. Besides computational advan-
tages, the low dimensional projection also serves noise reduction
in a similar way as Latent Semantic Indexing [30] applies to the
word–document matrix. We perform brute force nearest neighbor
search in thet dimensional space defined byUt and consider the
first 1000 nearest vertices as top list. Given that we use very low
values oft, we could replace brute force search by more elaborate
data structures [34] or approximation [17]; in our case however the
sample was small enough to use the simplest implementation. In
the experiments we use theSVDPACK [4] Lanczos implementation
for computing the first 10 singular vectors.

HITS [20] authority scores are the coordinates of the first (right)
singular vector of the adjacency matrix of the vicinity subgraph.
The idea of using more than just the first singular vector appears in
several results. The instability of a single authority (or hub) vector
and stability of thet dimensional projectionUt is described by [26].

The Companion algorithm [8] builds the 2-step alternating neigh-
borhood of the given vertex; then performs the HITS authority
computation and returns the top authorities. We use a simplified



version that excludes steps such as edge weighting, large degree
handling and link order considerations. For a query nodev we
build the vicinity graph by selecting nodes of length two alter-
nating forward-backward of backward-forward paths starting atv.
We randomly truncate large neighborhoods to a maximum of 2000
nodes in the first step and to 10 in the second step, as in [8]. We
rank by the authority score and use all nodes of the vicinity graph
as the top list. HITS is computed by simple power iteration.

4. EXPERIMENTS

4.1 Data sets
We use two data sets, the 31.2 M page crawl of the.de do-

main provided us by Torsten Suel and Yen-Yu Chen and the 20 M
page crawl mostly from the Switzerland domain as courtesy of the
search.ch engine [33]. We apply the evaluation methodologies
of [3] for the .de and the data of [37] for the Switzerland domain
that we review next.

The crawl carried out by the Polybot crawler [36] in April 2004
gives a German graph denser than the usual web graphs with 962 M
edges implying an average out-degree of 30.82. Unlike in our pre-
vious result on the same data [3] we use the host graph not just be-
cause it speeds up experimentation but also because intra-site links
that would give trivial similarity within the same host disappear and
host level detection forms a more interesting task. When forming
the host graph, we are left with a modest 808 K node and 24 M
edge graph.

For the .de data we manually evaluated a stratified random
sample as proposed first in [15]. We ordered the pages accord-
ing to their PageRank value and assigned them to 20 consecutive
buckets such that each bucket contained 5% of the total PageRank
sum. As this step was made for the prior experiment, we computed
PageRank over the page-level graph instead of the host graph; strat-
ification in the sample selection however has no further effect on
our experiments. From each bucket we chose 50 URLs uniformly
at random, resulting in a 1000 page sample heavily biased toward
pages with high PageRank. The sample was manually classified
as described in [3] with judgements reflecting the state as of April
2004. Figure 1 shows1 the distribution of categories among the
hoststhat slightly differ from the page level distribution [3]. Our
prior findings of 16.5% spam among.de pages [3] agrees with
[27] and our increased 20.9% spam on the host level with the simi-
lar findings of [2] for the.uk domain.

The search.ch data is a 2004 crawl of approximately 20 M
pages mostly from the.ch domain. We used the domain graph
with 300 K nodes and 24 M edges reflecting the connectivity of the
two highest levels of the domain hierarchy within this dataset [37].

The 19605 domains appearing in the URL list extracted by Wu
et al. [38] from the Switzerland specific ODP [28] topics formed
our trusted set. As spam set we used a labeled list of 728 do-
mains provided bysearch.ch [33]. One particular property of
this blacklist is that 627 domains share 144 different IP addresses,
the remaining 101 could not be resolved in June 2006. Note that
the Swiss evaluation sample contains 3.6% spam only.

4.2 Evaluation by cross-validation
We evaluate our methods together with trust and distrust propa-

gation baselines by three-fold cross-validation. We observe very
large variance between various random cross-validation splits, a
phenomenon that we show for a single feature instance in Fig. 2

1 Unless stated otherwise all figures in this section refer to the.de
dataset.

Weborg 0.2%

Ad 1.0%

77.9 %

Reputable

Spam 20.9%

Figure 1: Distribution of categories among the hosts in the eval-
uation sample

but holds for all features. The explanation likely lies in the small
size of our sample: given a query page, the success of spam classi-
fication heavily depends on whether those possibly very few pages
that contain relevant information are used for test or training.

Given the large variance, we show or measurements by averaging
cross-validation results with five independent random splits that al-
together correspond to 15 measurements, three for each split. Since
in the 15 measurements we will have precision values for different
values of recall and we may have several precision values for a
given recall, we need special care to average our measurement.

We average our measurements by extrapolating precision for a
given recall from measured values. For a single measurement we
obtain precision–recall value pairs by imposing different thresh-
olds. By decreasing the threshold we increase recall; increment
is however in discrete steps that changes whenever the threshold
reaches new hosts. If we reach a single host that is spam, both
precision and recall increases by certain amount; we may then lin-
early extrapolate between the recall at the boundaries. If the new
host is honest, we obtain a new, smaller precision value for the pre-
vious recall; we average all these values for a single experiment
before averaging between measurements. Given ties, we classify
more than a single host that makes recall increase and precision
change according to the fractionα of spam among the new hosts.
For a given intermediate recall we may then interpolate by adding a
(possible fractional) number of pages with a fractionα of spam and
computing precision. This method reduces to linear interpolation
for a single new spam page withα = 1 but nonlinear otherwise.

4.3 Baseline results
For baseline experiments we use the trust and distrust propaga-

tion measures of Wu et al. [38] by personalizing host based Page-
Rank on known honest vs. spam hosts. We reproduce results of
these experiments as Wu et al. [38] choose methods other than
precision-recall curves for evaluation. We use the following vari-
ants described by [38]. In a single personalized PageRank itera-
tion we may use constant splitting or logarithm splitting instead of
equal splitting. We also use the maximum share variant by replac-
ing summation by maximum in the PageRank equation. We leave
the maximum parent variant of [38] for future work; we hence test
6 variants, including the original BadRank corresponding to simple



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Pr
ec

is
io

n

Recall

Figure 2: The outcome of five threefold cross-validation results
with various random splits, for co-citation with SVR, altogether
corresponding to measurement points over 15 precision-recall
curves.

summation equal splitting in the terminology of [38].
We experiment with different values of teleportation probability

c. This value has negligible effect on the best measures as seen in
Fig. 3. Other measures depend more heavily onc and reach best
performance in general with lowc. Since it has no effect on the
comparison of methods we use a uniformc = 0.1 afterwards.

Our best trust and distrust propagation measurements are shown
in Fig. 4, all withc = 0.1. Unmodified BadRank (equal split, sum-
mation) performs best at lowest recall but outperformed by equal
split maximum share later. Logarithm split maximum share per-
forms slightly worse but still outperforms the remaining three vari-
ants. Due to insufficient trust information, trust propagation per-
forms very poor and often even below the random 20.9%, meaning
that most spam manages through in cheating our TrustRank. Only
the best original TrustRank (equal split, summation) is shown.

As suggested in [38], we improve results by combining trust and
distrust propagation. We use linear combinations; surprisingly the
best results are achieved by subtracting 0.8 times the trust score
from 0.2 times the distrust score. Results for using the previous
three best distrust score and the single best TrustRank is shown
in Fig. 5. Hence although TrustRank performs bad alone due to
insufficient trust information in our.de data, still its vote gives
significant help to distrust propagation.

Over thesearch.ch dataset unmodified BadRank and loga-
rithm split with simple summation performed best, their graphs are
shown in Fig. 11.

4.4 Similarity based features
We use features with abbreviations SR, SON, SVR and SVONV

as described in Section 3. For all four Figs. 6–9 we see bad pre-
cision at low recall, suggesting that honest pages may also collect
high ranked similar spam that may be the result of artificial rank
manipulations that is left for future work to verify.

Our methods perform best at relative high recall; finally con-
verges to the random choice of 20.9% spam among hosts for very
high recall. We see SR–SVR and SON–SVONV values in pairs
performing very close. The first pair performs better at medium
recall; the second pair performs poor in general but has a peak at
higher recall where outperforms the first pair.
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Figure 3: Precision as a function of recall for distrust propaga-
tion with logarithm splitting and maximum share. Four differ-
ent values of teleportation probability c are shown.
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Figure 4: Precision as a function of recall for the best three dis-
trust propagation variants and the single best TrustRank trust
propagation.

Co-citation (Fig. 6) turns out best even at relative high recall val-
ues with Companion (Fig. 7) as the runner up. Our observations on
the relative ordering of individual features and similarity functions
hold unchanged over the Swiss dataset as well, hence we report
figures only for the German data.

While our most successful candidate, notice the very easy spamma-
bility of the co-citation measure. As described by [21] we have to
resist both false negative attacks of hiding spam as well as false
positive ones that demote the competitor. Co-citation suffers the
same vulnerability against spammers as in-degree: a spammer can
easily create a large number of honey pot hosts that co-cite quality
pages along with the spam target. By adding hosts that point to an
honesth and a spam hosts, we increase the chance of votingh
spam ands honest.

Although SimRank (Fig. 8) performs poorest, it is the most ro-
bust measure against manipulations. In order to modify SimRank,
the spammer must use a large number of pages that lead to both
the spam targets and an honest pageh. Depending on the Page-
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Figure 5: Precision as a function of recall for combined 0.8
times trust and 0.2 times distrust propagation.
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Figure 6: Precision as a function of recall for the four co-
citation features.

Rank ofh it is very unlikely that paths backward fromh meet those
from s that would mean high SimRank betweenh ands. Replacing
SimRank with a better performing variant remains future work.

4.5 Comparison of best features
Finally in Fig. 10 we show all features that perform best for cer-

tain ranges of recall. BadRank is very effective at penalizing spam
only but its recall is very low. Combined 0.2 times distrust mi-
nus 0.8 times trust propagation extends BadRank’s performance,
for the price of slightly decreased precision, to somewhat higher
recall. Finally co-citation seems most effective for prediction with
high recall. We also show Companion in Fig. 10 as the next best
candidate if we disqualify co-citation due to its manipulability.

Turning to the Swiss dataset depicted in Fig. 11 we observe that
distrust propagation with the unmodified BadRank algorithm or
logarithm split and simple summation performs on par with Com-
panion. As before, co-citation is the most precise measure with
the exact feature depending on the level of recall. However over-
all accuracy is significantly higher than those observed for the.de
domain. We attribute this to the (undisclosed) method(s) applied

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

Pr
ec

is
io

n

Recall

son
sr

svonv
svr

Figure 7: Precision as a function of recall for the four compan-
ion features.
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Figure 8: Precision as a function of recall for the four SimRank
features.
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Figure 9: Precision as a function of recall for the four SVD
nearest neighbor features.
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Figure 10: Precision as a function of recall for the best features.
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Figure 11: Precision as a function of recall for the best features
on the Swiss domain graph.

by search.ch [33] to assemble the blacklist. For example, as
already noted in Section 4.1, a large number of link farms share the
same IP address. Hence a simple similarity measure based on the
equality of IP addresses associated with the domains also works
reasonably well. As shown on Fig. 12 accuracy decreases if we
keep only a single domain for each IP address in the evaluation
sample.

5. CONCLUSIONS
We presented hyperlink similarity based single feature classifi-

cation measurements over a manually classified sample of the.de
domain and thesearch.ch datasets. Our experiments demon-
strated that similarity search based methods are indeed capable of
learning the difference between spam and non-spam pages. In fur-
ther work more SimRank variants and the combination of several
features can be measured, including content based statistical fea-
tures identified by Ntoulas et al. [27]; for combination decision
trees as well as SVM should be used. Moreover, akin to [32] it
needs to be investigated whether the accuracy of content based
spam classifiers can be boosted by incorporating estimates assigned
to similar nodes. In addition, the quality of the sample should be
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Figure 12: Precision as a function of recall for the best features
on the Swiss domain graph with unique IP addresses.

improved by additional manual classification effort as well as other
data sets should be involved in the measurement.
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