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ABSTRACT

Nowadays web spamming has emerged to take the economic
advantage of high search rankings and threatened the accu-
racy and fairness of those rankings. Understanding spam-
ming techniques is essential for evaluating the strength and
weakness of a ranking algorithm, and for fighting against
web spamming. In this paper, we identify the optimal spam
farm structure under some realistic assumptions in the sin-
gle target spam farm model. Our result extends the op-
timal spam farm claimed by Gyo6ngyi and Garcia-Molina
through dropping the assumption that leakage is constant.
We also characterize the optimal spam farms under addi-
tional constraints, which the spammer may deploy to dis-
guise the spam farm by deviating from the unconstrained
optimal structure.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrival

General Terms
Theory, Algorithms
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1. INTRODUCTION

In the past decade, search engines such as Google, Yahoo,
and MSN;, etc. have played a more and more important role
in our everyday lives. Therefore, web sites that show up
on the top of query results lists have had an ever increasing
economic advantage. This has given people the incentives to
manipulate the search results by carefully designing the con-
tent or link structure of a web page — web spamming [10].
The emergence of web spamming would undermine the rep-
utation of a trusted information resource. A study in 2002
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indicated that around 6 to 8 percent of the web pages in
a search engine index were spam [7]. This number has in-
creased to around 15 to 18 percent from 2003 to 2004 [11,
1]. This increasing tendency makes many researchers believe
that web spamming will become a major challenge for web
search [12].

There are two major categories of web spamming tech-
niques: term spamming and link spamming. Term spam-
ming boosts the ranking of the target pages by editing a
page’s textual content. For example, one can add thousands
of irrelevant keywords as hidden fields to the target pages.
A search engine will index those keywords and return the
target pages as answers to queries that contain those key-
words. Link spamming, on the other hand, manipulates the
interconnected link structure of controlled pages, called a
link spam farm, to boost the connectivity based ranking of
the target pages higher than they deserve[9]. PageRank [4],
the well known connectivity based ranking algorithm used
by the leading search engine Google, is the most popular
manipulating target for spammer. Compared to term spam-
ming, link spamming is harder to detect as it can boost the
ranking of the target pages without changing the content.

1.1 Single-Target Spam Farm Model

In order to boost the ranking of some web pages in the we-
bgraph, the spammer often set up groups of web pages with
carefully devised structure. The group of pages fully con-
trolled by a spammer is called a spam farm while non spam
farm pages are called normal pages. The simplest spam farm
model is the single-target spam farm model [8], which has
the following characteristics:

1. Each spam farm has a single target page and a fixed
number of boosting pages.

2. The spammer wants to boost the target page by adding
or deleting the outgoing links of the boosting pages and
the target page.

3. It is possible for the spammer to accumulate links from
webpages, such as public bulletins and blogs, outside
the spam farm. These links and external pages are
called hijacked links and hijacked pages, respectively.
The total PageRank score that reaches the spam farm
from the hijacked links is refer to as the leakage.
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As a first step to detect web spam, researchers need to
identify various spamming techniques. Langville et al. in-
troduced the problem of link spam analysis as future work



in their comprehensive survey [14]. Bianchini et al. [3] stud-
ied how to design the structure of a webgraph that contains
exactly N pages such that a page’s PageRank score is maxi-
mized. However, in practice, spammer can not have control
of all the web pages. When spammer only have control of a
small fraction of the webgraph, the optimal link structure of
the spam pages, especially links from external pages to the
spam, is not addressed in [3].

Gyongyi and Garcia-Molina [8] first introduced the sin-
gle target spam farm model. In this model, the spammer
wants to boost the PageRank score of the target page by
manipulating the outgoing links of the target page and a
set of boosting pages. They claimed to have identified a
link structure that was optimal in maximizing the PageR-
ank score of a single target page. However, we find that the
optimality proof of the paper is flawed by assuming PageR-
ank score flowed into spam farm was constant. Nevertheless,
given the extremal nature of the optimal link structure, it is
not surprising that their conclusion is very close to the cor-
rect answer. Moreover, the optimal spam farm structures
are easy to detect [18]. The spammer can deviate from the
optimal spam farm structure to disguise the spam farm. Un-
fortunately, this problem was not well addressed in [3, 8].

Adali et. al. [17] studied the optimal link structure under
the assumption that the spammer only have control of the
boosting pages, but not the target page. Moreover, the op-
timality of the disguised attack depends on the forwarding
value, which has a flavor of PageRank score. In order to
compute forwarding value, the spammer have to solve a sys-
tem of linear equations like PageRank. Considering the size
of the real web, this would require the spammer to have huge
computation resources. Thus, such attack strategies are not
very practical. A. Cheng and E. Friedman [5] quantitatively
analyze PageRank score increase of the target page under
optimal sybil attacks [3]. Moroever, although the definition
of PageRank in [5] is significantly different from the stan-
dard one by Page et. al. [4], the result in [5] can be easily
modified to the standard case by following exactly the same
proof ideas.

1.3 Our Results

In this paper, first, we show that the result about optimal
spam farm structure in [8] is flawed by assuming constant
leakage. In particular, the hijacked links pointing to the
boosting pages may be helpful to boost the target page,
too(ref. figure 1). This is the main difference between our
result and the result of Gyéngyi and Garcia-Molina. The
link structure of the hijacked pages is worth special study.
Because compared to the target page and the boosting pages
that are created by the spammer, the hijacked pages may
have diversified contents, associate with different domains
and thus are harder to be detected. Moreover, while the link
auction business, which sells the outgoing links of some web-
pages with relative high rankings by auction, is emerging,
it becomes a great resource for the hijacked pages. There-
fore, a careful study of the hijacked links is important for
designing spam farm structure in link spamming.

We characterize the optimal spam farm by using sensitiv-
ity analysis of Markov chain. Under realistic assumptions,
the optimal spam farm(ref. figure 2) should have the follow-
ing features: 1) The boosting pages point to and only to the
target page; 2) The target page points to and only to some
of the generous pages, which are the web pages that only

point to the target page; 3) Spammer accumulates as many
hijacked links as possible.

In an optimal spam farm, the boosting pages, as well as all
the hijacked links that the spammer is able to accumulate,
must point to the target page. This structure is easy to
detect. In order to disguise the spam farm, the spammer
may deviate from the optimal one. Thus we also characterize
optimal spam farms under some realistic constraints. We
show that in the optimal spam farm, if the target page must
point to some non spam farm pages, the target page should
point to all the generous pages(ref. figure 3); if some of the
boosting pages can not directly point to the target page,
they should point to some of the generous pages(ref. figure
4); if the hijacked links can not directly point to the target
page, spammer should accumulate as many hijacked links
pointing to the boosting pages as possible(ref. figure 5).

The rest of the paper is organized as follows. Section 2
introduces PageRank algorithm and the mathematical foun-
dation of this paper. Section 3 revisits the optimal spam
farm structure in [8]. Next, Section 4 characterizes the opti-
mal spam farm under some realistic assumptions and section
5 characterizes a set of optimal spam farms under some nat-
ural constraints. We conclude in Section 6 and suggest some
future directions.

2. PRELIMINARIES

In this section, we briefly describe PageRank algorithm
and the sensitivity analysis of Markov chain, which is the
main mathematical tool of this paper.

2.1 The PageRank Algorithm

We follow [14, 4] to define PageRank. Let G = (V, E) *
be a directed graph with vertex set V' and edge set E. We
assume that there is no self-loop in G. Let N = |V|, and for
a vertex i € V, denote by out(i) the out-degree of i. The
transition matriz of G is T = [Tij]1<i,j<n:

1 . .o
T, = o) if (¢,j) € E
0, otherwise

Denote by e € RV the all 1 row vector (1,1,---,1), and by
E € RV*YN the all 1 matrix. Let T be identical to T except
that if a row in P is all 0, it should be replaced by e/N.A
page without outgoing links is called a dangling page. For
some constant ¢, 0 < ¢ < 1, the transition matrix for the
PageRank Markov chain is

P=cT+(1-c)E/N.

The PageRank 7 is the stationary distribution, i.e., 1P = m,
of the above Markov chain M. Our definition of PageRank
score is different from the definition in [8], where the PageR-
ank score 7 is defined as ™ = 7T + %e. However, the
two definitions yield the same relative PageRank scores [14,
8]. This relation can be represented as m = a7, where « is a
constant. When the constraints > m; =1 and ), 7; = 1 are

enforced, the two definitions will induce exactly the same
PageRank score for each page.

"We assume that there is no self loop in the webgraph. All
our results can be easily extended by following the same
proof ideas in this paper if self loop is allowed.



2.2 Sensitivity Analysis of Markov chain

Our theoretical foundation consists of one theorem ad-
dressing the mean first passage time of Markov chain [13],
two theorems about fundamental matrix of Markov chain
[13] and one theorem of the monotone property of Markov
chain [6] . Due to the space constraint, we only present
the theorem statements. Interested readers can refer to the
standard textbooks such as [13, 6, 2] for details. We fix a
Markov chain of N states and of which the transition matrix
is P.

DEFINITION 1. The mean first passage time from ¢ to j,
denoted by msj, is the expected number of steps entering
State j starting from State i.

THEOREM 1. [18] Let P be the transition matriz of a reg-
ular Markov chain. We have the following facts:

1. For any two states i and j, mi; =14+ > pixmui;;
k]

2. For any state i, the stationary distribution m; = ml ;

it

3. For any two states i # j, changing the transition prob-
abilities of j to any other states does not change m;.

DEFINITION 2. The fundamental matrix Z of the transi-
tion matriz P of a Markov chain is defined as:

z¥a1-(P-B).

Here B 2t im P*.

k—oo

Two fundamental results about the fundamental matrix
are:

THEOREM 2. [13] The fundamental matriz of a regular
Markov chain with transition matriz P always exists, and
further more,

Z=1+>(P-B)"
k=1

THEOREM 3. [6] Let P and P be the transition matrices
of two Markov chains and P = P + A. Suppose T and
are the stationary distributions of P and P while Z is the
fundamental matriz of P. We have the following facts:

1. #=#AZ+n;

2. Z 1is diagonally dominant over columns, that is, z;; >
zij for all i and j. Furthermore, for alli and j, j # i,
Zjj = Zij = MijTj;

Chien et al. [6] proves the following useful monotone prop-
erty of Markov chain.

THEOREM 4. Let P be the transition matriz of a finite
state reqular Markov chain and let i and j be arbitrary states
of P. Let A be a matrix that is zero everywhere except in row
i, the (i,7) entry is the only positive entry, and P = P + A
is also the transition matriz of a reqular Markov chain. Let
7 denote the stationary distribution of P. Then 7; > ;.

Hijacked Page

————_Hijacked Page

Target Page Target Page

(b)

Figure 1: Counter Example

3. THE OPTIMAL SPAM FARM STRUCTURE
REVISITED

In the seminal paper on the single target spam farm model [8],
Gyongyi et al. claimed that the linking structure of a spam
farm would be optimal if and only if all the following condi-
tions are satisfied:

1. all boosting pages point to and only to the target page;
2. there are no links among the boosting pages;

3. the target page points to some or all of the boosting
pages;

4. all hijacked links point to the target page.

Unfortunately, the result is not always true. A counter ex-
ample is given in Figure 1. In this example, we set ¢ = 0.85.
The webgraph has 6 nodes (i.e. web pages). Node 1 is
the target page, Node 2 and 3 are the boosting pages while
node 4 is the hijacked page. Figure 1(a) shows the initial
link structure of the webgraph, in which hijacked page 4
only points to the target page 1. The link structure of we-
bgraph in figure 1(a) meets all conditions of the optimal
spam structure in [8], inducing PageRank score 0.4223 for
the target page. Now, if we add an additional link from hi-
jacked page 4 to boosting page 2, the resulting structure, as
shown in figure 1(b), violates condition 4 of optimal spam
farm claimed in [8] but gives target page 1 PageRank score
0.4245, which is higher than the previous case.

The reason why the optimal structure in [8] breaks down
is: Gyongyi et al.’s proof lies in the mistaken assumption
that leakage, the flow of PageRank scores into the spam
farm, is constant. This value is obviously not a constant
and may depend substantially on the link structure of spam
farm. The reasons are: first, although Gyongyi et al.’s as-
sume that the spammer does not have full control of the
hijacked pages, it is still possible that the spammer can add
multiple links on the hijacked page; thus leakage should de-
pend on the number of hijacked links. Actually, in practice,
the hijacked pages could be the bulletin or online blogs. The
webpages in link auctions could also be used as hijacked
pages. Therefore, in both cases, the spammer can add mul-
tiple links on the hijacked pages. Second, even if the link
structure of the hijacked pages is fixed, the leakage could
still be a variable. This is because PageRank is a global
property and any change of local structure(such as the links
of the target page and the boosting pages) can influence the
global distribution of PageRank. In all, the assumption that
the leakage is constant is mistaken.
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Figure 2: Optimal Spam Farm

Actually, by assuming the leakage is constant, the proof in
[8] implicitly assumes that there is no links from the target
page or the boosting pages to the hijacked pages.(Otherwise,
the leakage is a variable.) Moreover, if we drop the constant
leakage assumption, the proof in [8] does not work anymore.
Thus it requires us to develop new techniques to deal with
the case when leakage is a variable. In the next section, we
introduce the main tools for our analysis, which is funda-
mentally different from Gyongyi et al.’s approach.

4. CHARACTERIZATION OF OPTIMAL
SPAM FARM

In this section, we shall give the characterization of opti-
mal spam farm under some realistic assumptions. First, we
introduce two definitions.

DEFINITION 3. A webgraph is called a realistic webgraph
if
1. The number of web pages N is large enough such that
205 > 1,

2. The number of dangling pages is at least 2.

In practice, ¢ takes value from 0.8 to 0.9 [15, 4] while Google
indexes around 6 billion web pages, many of which are dan-
gling pages. Therefore the definition of realistic webgraph
is very natural.

DEFINITION 4. If a web page only points to the target
page, we call it a generous page.

Then we characterize the optimal spam farm as shown in
Figure 2 in the following theorem.

THEOREM 5. In a realistic webgraph, we assume that each
hijacked page already points to a set of non generous pages
such that at least two of them are not hijacked pages and
do not point to any generous page. Then a spam farm is
optimal iff

1. The boosting pages point to and only to the target page;

2. The target page points to and only to some of the gen-
erous pages;

3. The hijacked pages point to the target page and all the
boosting pages.

In Theorem 5, the assumptions about the hijacked pages
are realistic. Because in the real world, the hijacked pages
are most likely to be online bulletins or blogs. Those pages
probably point to a number of normal web pages that are
neither generous pages nor hijacked pages. Moreover, the
contents of the hijacked pages are not likely to be relevant to
spam farm pages. Based on the belief that one page points
to another if they are relevant, it is reasonable to assume
that at least two of the web pages, which the hijacked pages
point to, do not point to generous pages.

Although we give the optimal spam farm in the above
theorem, spammer may not achieve the maximum PageR-
ank score for the target page in practice. The reasons are
two folds. First, there are enormous bulletin pages and blogs
that can be used as hijacked pages and it is impossible for
spammer to add hijacked links to all of them. But, accord-
ing to the proof of Theorem 5, in order to maximize the
PageRank score of the target page, spammer should hijack
as many pages that satisfy our assumption as possible. Sec-
ondly, adding a link from a hijacked page to a normal page
may boost the target page, too. However according to the
definition of single target spam farm model, the hijacked
links should point to spam farm pages. Thus we do not
consider such case in our theorem.

In our proof of Theorem 5, we find out the optimal struc-
ture by optimizing outgoing links of the target page and the
boosting pages as well as the hijacked links step by step.
This proof is totally different from proof in [8], which solves
the optimization problem as a whole. Consequently, our
method will provide more insights about the effect of adding
or deleting links compared to the method of Gyongyi and
Garcia-Molina. In the following proof, let ¢ be the target
page, g be a generous page, d be a dangling page, b be a
boosting page and h be a hijacked page.

First we study the outgoing links of the boosting pages in
the optimal spam farm.

LEMMA 1. In the optimal spam farm, the boosting pages
should point to and only to the target page.

Proor. First we claim that the boosting pages should
point to the target page in the optimal spam farm. We
will prove this claim in two cases. The first case is that
the boosting page b has nonzero out degree. When adding
(b,t) into E, Vk # t, if edge (b, k) € E, ppr decreases from
ct+(1—c)% to clil + (1 = ¢) 4, where [ is the out degree
of page b before adding the link (b,t); if edge (b,k) ¢ E,
P does not change. At the same time, py: increases from
(1-c)x to CH%I 4+ (1 — ¢)%. The second case is that b
has zero out degree. When adding the edge (b,t) to E can
increase pp: from % toc+ (1 — c)% Vk # t, ppi decreases
from % to 1;{0' According to theorem 4, adding the edge
(b,t) can increase the PageRank score of the target page t.
Therefore the boosting pages should point to the target page
in the optimal spam farm.

Next we claim that the boosting pages can not point to
any other pages besides the target page in the optimal spam
farm. We would prove this claim by contradiction. If b
points to t and some other pages ki1, k2, ..., ki other than ¢,
we will delete all the links from b to k1, k2, ..., ki and see what
happens. Before the deletion, pp,, ..., pox, and py; should
be CH%I +(1—-¢) L. after deletion, Dbky s - Dbk, would be

N
(1—c)+ and pe: would be ¢+ (1—c¢)+, it is obvious that py
increases and puk, ; ..., Dok, decreases. According to theorem



4, the deletion operations can increase the PageRank score
of the target page t. Therefore the boosting pages can not
point to any other pages besides the target page.

Finally putting together the two claims proves the lemma.

Lemma 1 implies that in the optimal spam farm, the
boosting page should be a generous page. However, please
note that not every generous page is a boosting page, since
a normal page in the webgraph may only point to the target
page too.

Next, we study the outgoing links of the target page in
the optimal spam farm. The basic idea is that according to
Theorem 1, if we want to maximize the PageRank score of
target page t, we need to minimize the mean first passage
time my¢. Since the mean first passage time will play an im-
portant role in our proofs, the following two lemmas would
address the mean first passage times of generous pages and
dangling pages to the target page. Please recall that my;
stands for the mean first passage time from page i to page
j while g and ¢ stand for the generous page and the target
page respectively.

LEMMA 2. For any page k, mgi < my. Moreover, mg; =
me iff k is a generous page.

PrOOF. According to Theorem 1,

mgt =1+ Zpgimit (1)
i#t

Mg = 1+ Zpkimit (2)
it

According to the PageRank algorithm, for any page i # ¢,
Dgi = % < pw;. It is obvious that mg < my¢. Moreover,
mgy = my, iff for any page ¢ # t, pgi = prs, which implies
that k is a generous page too. [l
N-1

N
PROOF. According to equations 1 and 2, we can get

C
mqr — Mgt = N Z Mt (3)
kott

LEMMA 3. mgr —mgt > ¢ Mygt.

Since for any k, mr: > mg:, we can get

N -1
mdr — Mgt > Cngt

a

Based on the above two lemmas, we can characterize the
outgoing links of the target page in the optimal spam farm.

LEMMA 4. In a realistic webgraph, the target page should
point to and only to some of the generous pages in the opti-
mal spam farm. >

PRrOOF. According to Theorem 1, if we want to maximize
the PageRank score of the target page t, we need to minimize
the mean first passage time my. We would prove this lemma
by proving the following three claims.

First, we claim that in the optimal spam farm, ¢ have
nonzero out degree. Because if ¢ has zero out degree,

1
my =14 N Z Mt
i#£t
2If self loop is allowed, the target page should only point to
itself in the optimal spam farm.

However, if ¢ points to a generous page g,

_—_ 1-c¢
My = lJrC-mgtJrTZmit
i#£t
= 1l4c(m —lZm')—i—iZm‘
= gt N¢t it N;tt it

According to the assumption of a realistic webgraph, there
are at least two dangling pages di and dz. Therefore

Nomgi— E Myt = E (mge—mmse )+ (3Mget—ma, e —Maye)
it i#t,dq,da

According to Lemma 2, mg; < my¢; furthermore, accord-
ing to Lemma 3 and the assumption that 20% > 1, then
3mgr < Ma,t+mMay:. Therefore Numg: — > my: is negative.

i#t
Consequently, my < my. It implies that in the optimal
spam farm, ¢ can not have zero out degree.

Next we claim that in the optimal spam, the target page
can not point to non generous page. Suppose the set of
pages t points to is K. Then

If t only points to generous pages,

My = 14 comge + %Zmu
i#£t
According to Lemma 2, when C contains non generous pages,
M < M. It implies that in the optimal spam farm, the
target page can only point to generous page.

At last, we claim that in the optimal spam farm, when
the target page only points to generous page, the number of
generous pages the target page points to does not matter.
If ¢ points to ¢ € N generous pages,

C. 1—c¢
my =1+ ngt + N Z Mt
q it

If t points to ¢ + 1 generous pages,

— c.(g+1) 1-c¢c
mtt—1+ q+1 mgt"’ N ;mii

It is obvious that mz = ms:. Therefore, when the target
page only points to generous page, the number of generous
pages the target page points to does not matter.

Finally, putting together the three claims proves the lemma.

The last step to prove Theorem 5 is to study the hijacked
links. The proof of Lemma 1 implies that in the optimal
spam farm, the hijacked pages should point to the target
page. The key question is whether the hijacked pages should
point to the boosting pages besides the target page. In order
to answer this question, we first prove the following lemma.

LEMMA 5. Suppose a hijacked page h already points to
the target page t and a set of non generous pages IC, adding
the link (h, g) where g is a generous page can boost the target

page iff > mre > (K] + )mge.
kex



ProoOF. Let 7 and 7; be the PageRank score of the target
page before and after adding the link (h,g). According to
Theorem 3, we can get

7:Ft — Tt = ﬁAh*Z*t

When adding the link (h,g), dng = — > 6n; and Vi #
i#g
g76hi < 07 then
Ah*Z*t
= Z 5hi(2’it - th)
i#g,(h,i)EE

= > Oni((zee — 2gt) — (2t — 2it)) + Ont(2ee — 2gt)
i#g,t,(h,i)EE
Since zit — zit = M4tTt, we can get

ApsZur = 7Tt6ht( Z
i£b,t,(h,i)EE

me0ne (K| + Dymge — D mie)

ke

(Mgt —mit) + mgt)

Because dp¢ < 0 and ¢ > 0, we know that 7 > m iff

> i > (K| + Dmge. O
ke

Lemma 1 and 5 give a necessary and sufficient condition
for the optimal link structure of the hijacked pages. How-
ever, spammer may not have any knowledge about the mean
first passage time. Therefore, in the following lemma, we
will address the link structure for those hijacked pages that
satisfy some realistic assumptions. The statement of this
lemma has nothing to do with mean first passage time.

LEMMA 6. In a realistic webgraph, suppose a hijacked page
h already points to a set of non generous pages KC; moreover
at least two web pages in K do not point to any generous
page. In the optimal spam farm, h should point to the target
page and all of the boosting pages.

PROOF. Suppose k1, k2 € K do not point to any generous
page. We claim that mup ¢ — mg: > c¥tmg:(the same in-
equality holds for k2). We prove this claim by considering
two cases. If ki has zero out degree, Lemma 3 proves that
Mgyt —Mgt > c%mgt. If k1 has non zero out degree, based
on equation 1 and 2, we can get

1—c¢
Miy ¢ — Mgt = Z(pkli — T)mit
it
> Cc.Mmygt

N-1
Therefore my, s — mgt > c=F=mgt.

The proof of Lemma 1 implies that in the optimal spam
farm, all the boosting pages are generous pages and h should
point to the target page. When h already points to the
target page, Lemma 5 tells us that adding a hijacked link
from h to a generous page g can further boost the target
page iff Y mir > (K| 4+ 1)my:. Based on our assumption,

kEK

we know that
N-1
Z mee > |Klmge + 26ngt

keK
> (K| + 1)mg:

Therefore, h should point to all of the boosting pages. The
lemma is proved. [J

/ Spam Farm \

Figure 3: Optimal spam farm when the target page
points to non generous pages

At last, if we summarize Lemma 1, 4 and 6, it would give
us a unique configuration of the optimal spam farm. This
will complete the proof of Theorem 5.

5. OPTIMAL SPAM FARM UNDER CON-
STRAINTS

As shown in Theorem 5, in the optimal spam farm, the
target page only points to generous pages while the boosting
pages only point to the target page. This structure is easy
to detect. In order to disguise the spam farm, the spammer
may require that the target page should point to some non
generous pages or the boosting pages should not directly
point to the target page or the hijacked pages should not
directly point to the target page. What are the optimal
spam farm structures under those constraints is an interest-
ing question.

First, we characterize the optimal spam when the target
page is required to point to some non generous pages in the
following theorem.

THEOREM 6. If the target page t is required to point to a
set of pages IC, a spam farm is optimal only if

1. The boosting pages point to and only to the target page;

2. The target page points to a set of pages K| J L such that
(D2 muee + > mue)/(IK| + |£]) is minimized, where £ C
keK leL

V.

PrOOF. The proof of this theorem directly follows from
the proof of Theorem 5. []

In order to design the optimal spam farm under the above
constraint, spammer needs to find out the set of web pages £
such that the average mean first passage time of web pages in
KU L to the target page is minimized. This requires spam-
mers has the knowledge about the mean first passage time
of the webgraph. Given the limited computing resources of
a spammer, it is a nontrivial task for him to find out the set
L. However, Theorem 6 implies that in the optimal spam
farm, the target page should point to all the generous pages,
which is shown in Figure 3.

Next, we characterize the optimal spam farm, as shown in
Figure 4, when some of the boosting pages can not directly
point to the target page in the following theorem.



/ Spam Farm \
(4)

Boosting Page

Boosting Pagé

Figure 4: Optimal spam farm when some boosting page
can not point to the target page

THEOREM 7. In a realistic webgraph, suppose B is the set
of boosting pages and a subset of it B C B can not directly
point to the target page, then a spam farm is optimal only if

1. For any page in B\B, it points to and only to the target
page;

2. For any page in B, it points to some of generous pages;

8. The target page points to and only to some of generous
pages.

PRrOOF. For the pages in B\ B, Lemma 1 implies that
they should point to and only to the target page.

For the pages in B, first we claim that it can not have
zero out degree in the optimal spam farm. Because if b € B
has zero degree, adding the link (b, g) where g is a generous
page can boost the target page t iff

kat—N.mgt >0
ket

Given the assumption of a realistic webgraph, similar to the
proof of the first claim in Lemma 4, we know that b should
have nonzero out degree in the optimal spam farm.

Next, we claim that b can not point to non generous pages
in the optimal spam farm. Because when b has nonzero out
degree, deleting a link from b to another page j(but still
keeps b has non zero out degree) can boost the target page
iff

Z (mkt — m]‘t) <0

k#3j,(b,k)EE

According to Lemma 2, for a generous page g, mg: is mini-
mum. Combined with the previous necessary and sufficient
condition, it implies that b can not point to non generous
pages and the number of generous pages b points to does not
matter if b only points to generous pages. Consequently, b
should point to some of the generous pages in the optimal
spam farm.

For the target page, Lemma 4 implies that it should point
to and only to some of the generous pages. [J]

Please note that in the above two characterizations, we
ignore the hijacked links to avoid repeatedness. Because
according to the proof of Theorem 5, the structure of the
hijacked links in the optimal spam is quite independent of
the structure of outgoing links of the target page and the
boosting pages. Therefore, when the hijacked links need

/ Spam Farm \ Hijacked Pa;

Boosting Page

Figure 5: Optimal spam farm when the hijacked pages
can not point to the target page

to be taken into consideration, we can follow almost the
same analysis as Theorem 5 to find out the structure of the
hijacked links in the optimal spam farm.

Finally, we characterize the optimal spam farm, as shown
in Figure 5, when the hijacked pages can not directly point
to the target page in the following theorem.

THEOREM 8. In a realistic webgraph, suppose the hijacked
pages already point to some non generous pages and the hi-
jacked pages can not directly point to the target page, then a
spam farm is optimal iff

1. The boosting pages point to and only to the target page;

2. The target page points to and only to some of the gen-
erous pages;

8. The hijacked pages point to all of the generous pages.

A similar analysis as the proof of Theorem 7 can show cor-
rectness of Theorem 8. Because of the space constraints, we
omit the proof here.

6. CONCLUSIONS AND FUTURE WORK

Identifying spamming techniques is the first step to com-
bat web spam. In this paper, we characterized the opti-
mal spam farm structure under some realistic assumptions
in the single target spam farm model. Our result extends
the conclusion of Gyongyi and Garcia-Molina [8] by drop-
ping the constant leakage assumption. Moreover, we char-
acterized the optimal spam farms under some natural con-
straints, which may be deployed by spammer to disguise
the spam farm. We believe that the sensitivity analysis of
Markov chain is a fundamental tool to design and analyze
link spamming. Furthermore, our techniques are not only
useful to boost the PageRank score, but also helpful to an-
alyze other ranking methods based on the stationary distri-
bution of Markov chain, such as Invariant Ranking method
[16].

One natural open problem of our work is to estimate the
mean first passage time of a Markov chain. With the knowl-
edge of mean first passage time, spammer can design more
sophiscated spam farms that disguise the detection of search
engine. Another direction could be that using mean first
passage time information to identify spam farm structure.
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