
A Taxonomy of JavaScript Redirection Spam
Kumar Chellapilla
Microsoft Live Labs
One Microsoft Way

Redmond, WA 98052
+1 425 707 7575

kumarc@microsoft.com

Alexey Maykov
Microsoft Live Labs
One Microsoft Way

Redmond, WA 98052
+1 425 705 5193

amaykov@microsoft.com

ABSTRACT
Redirection spam presents a web page with false content to a
crawler for indexing, but automatically redirects the browser to a
different web page. Redirection is usually immediate (on page
load) but may also be triggered by a timer or a harmless user
event such as a mouse move. JavaScript redirection is the most
notorious of redirection techniques and is hard to detect as many
of the prevalent crawlers are script-agnostic. In this paper, we
study common JavaScript redirection spam techniques on the
web. Our findings indicate that obfuscation techniques are very
prevalent among JavaScript redirection spam pages. These
obfuscation techniques limit the effectiveness of static analysis
and static feature based systems. Based on our findings, we
recommend a robust counter measure using a light weight
JavaScript parser and engine.

Categories and Subject Descriptors
D.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.m [Information Storage and Retrieval]:
Miscellaneous

General Terms
Algorithms, Measurement, Performance, Experimentation,
Languages.

Keywords
Web search, web spam, JavaScript, redirection spam.

1. INTRODUCTION
Web spam pages can be broadly categorized into employing
boosting and/or hiding techniques [1]. While content and link
spam comprise common search engine rank boosting techniques,
cloaking and redirection spam are hiding techniques. Among the
redirection spam techniques, script based redirection is the most
notorious and difficult to catch. Script redirection spam presents
spam content to a script-agnostic crawler, but automatically
redirects a script capable browser to another URL as soon as the
page is loaded.
In this paper, we study common JavaScript redirection spam
techniques on the web. A review of redirection techniques is
presented in the rest of Section 1. Section 2 briefly presents
previous work on redirection spam. JavaScript features that

facilitate redirection and hiding are presented in Section 3. We
present a data set of URLs and estimate the prevalence of
JavaScript redirection spam in Section 4 and Section 5,
respectively. Section 6 presents a taxonomy along with
representative examples.
In this paper, we limit our analysis of script redirection spam to
client side scripts that run in the browser. Further, we use the term
JavaScript [2] interchangeably with JScript [3], which are the
Mozilla Foundation’s and Microsoft’s implementation of the
ECMAScript standard [4].
Modern browsers1 can be redirected in one of three ways, namely,
using HTTP protocol status codes, using a meta refresh tag in the
page header, or using a client side script.

1.1 Redirection using HTTP Status Codes
Web browsers typically redirect the user whenever they receive
certain HTTP status codes in response to a Get, Post, or Head type
of web request. The first digit of the status code defines the class
of response. A first digit of 3 represents redirection and indicates
that further action must be taken in order to complete the request.
These HTTP redirection status codes [5] include

a) 300: Multiple Choices
b) 301: Moved Permanently
c) 302: Found, Redirect
d) 303: See Other, Redirect Method
e) 307: Temporary Redirect

The destination of the URL redirect is provided by the Location
header entry of the HTTP response as follows:

HTTP/1.1 301 moved permanently
Location: http://www.wikipedia.org/
Content‐type: text/html
Content‐length: 78

Note that when a protocol level redirect is in place, the browser
redirects even before any actual page content is downloaded. This
is the most efficient way to achieve a redirect wherein user
latency and network bandwidth are minimal.

1.2 Redirection using META Refresh
Web pages that use a META tag in the head of the web page, such
as the following, can also be used to redirect the user.

<meta http‐equiv="refresh" content="0;url=http://www.destination.com/">

A META refresh tag has two attributes http‐equiv and content.
The http‐equiv attribute being set to “refresh” indicates that the
browser is to redirect. The content attribute is typically set to an

1 such as Internet Explorer, Firefox/Mozilla, Safari, Opera, etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

AIRWeb’07, May 8, 2007, Banff, Alberta, Canada.
Copyright 2007 ACM 978-1-59593-732-2…$5.00

integer followed by an optional URL. The integer indicates the
number of seconds of delay before the redirect and the URL
indicates the destination. The delay and URL are separated by a
semi-colon. In the case of a missing URL entry, the current page’s
URL is used instead. So, rather than redirecting, the web page is
reloaded. META refresh based redirection schemes are initiated
after downloading some part of the web page, typically the head.

1.3 Redirection using JavaScript
JavaScript based redirection is the most versatile of redirection
techniques and usually occurs after the whole web page has been
downloaded by the client. Once the page content is downloaded, a
JavaScript enabled browser parses the script tags and script
attributes present in the web page and starts executing the
JavaScript code in stages. Some of the script runs right away, i.e.,
as soon as the page completes loading, while other pieces run only
in response to timer and user events. It is important to note that
the executing script code can generate more script code that is
injected into the HTML DOM, producing a vicious cycle of self-
modifying code whose behavior is hard to predict. Modern web
browsers provide a rich event model that allows the page to
specify actions. JavaScript present on the page can be executed in
response to any of these events. Typical events include document,
keyboard, and mouse events:

Document: onload, onunload,
onchange, onsubmit, onreset, onselect, onblur, onfocus,

Keyboard: onkeydown, onkeypress, onkeyup,
Mouse: onclick, ondblclick, onmousemove,

onmousedown, onmouseover, onmouseout, onmouseup

1.4 Uses of Redirection
1.4.1 Valid Redirections
There are several legitimate scenarios that require redirection. The
most common use is to route traffic while migrating a web site
from one host to another. HTTP redirects can be implemented in
the web server program itself without altering any web page
content. Since the redirect occurs at the protocol level, very little
data gets exchanged between the client and the web server.

Web page authors who are not web server administrators may not
have sufficient permissions to perform an HTTP redirect. In such
scenarios, META refresh redirections come in handy. Legitimate
uses of META refresh include reloading the contents of a dynamic
web page such as a stock ticker, a database view, or weather map.
The reload is typically done every few minutes. It is also common
to use META refresh for creating a simple slideshow of web
pages by redirecting to the next page every few seconds. META
refresh can also be used to support splash pages that display a
page for a certain period of time and then move visitors into the
site. Splash pages usually also support a “click to enter” link that
can be used to skip past the delay. Some web sites also use META
refresh to periodically reload ads which can be annoying to users.

Both HTTP and META refresh techniques produce only static
redirections. However, JavaScript based redirections can produce
dynamic redirections that route traffic more intelligently. For
example, you might have multiple versions of a web page
designed for different browsers and use JavaScript to check the
browser type and redirect the user appropriately. JavaScript can
also be used to avoid direct access to pages in a frameset: using
the top.frames.length object, you can find out if the page is in a
frame or not. In reverse, JavaScript redirection is also useful for

breaking a viewer out of someone else's frames if they followed a
link that didn't have the target HTML attribute set correctly.

1.4.2 Questionable Redirections
Quick redirections (under 5 seconds) can cause usability
problems. Most users cannot hit the “Back” button fast enough,
which can be frustrating, especially when the destination page is
unavailable. On the other hand, automatically refreshing the page
can be confusing to users and spawn security concerns since they
did not request the reload.
Search engines vary in their tolerance of META refreshes.
AltaVista is known to have banned any web page that used a
META refresh with a refresh attribute set to less than 30 seconds.
However, presently, many search engines consider anything less
than a 5 second delay to be an indication of spam [6-8].
Using redirections to manipulate search engine crawlers with the
goal of improving a web site’s ranking is considered spam.
Domain forwarding and doorway pages are two very common
forms of redirection spam.
Domain forwarding can be used to make a common webpage
appear more important that it really is. For example, consider a
single user’s home page on AOL with a URL like
http://www.hometown.aol.com/SmallBusiness/. For business,
such a simple URL may not inspire confidence in buyers. So, the
user purchases a real domain name such as
www.SmallBusiness.com and uses a domain forwarding service
to redirect traffic. The service immediately redirects visitors who
type in http://www.SmallBusiness.com to the real AOL site. This
service usually costs a lot less than using a paid Web host. Note
that there are some legitimate uses of domain forwarding such as
using a short memorable domain name than a long domain name.
One such service is offered through www.tinyurl.com.
Doorway pages are used by both legitimate and spam sites to
improve rankings for certain search terms. The doorway page is
specifically designed and optimized to rank high for certain search
terms. Doorway pages can improve user experience by
introducing the site to the user and clearly stating what the site is
about. However, the problem occurs when the site targets terms
that are completely inappropriate to the site's topic. Visitors who
search on those terms may click on the doorway page, but then are
quickly redirected to a spam site.

1.4.3 Detecting Redirection
Web pages that redirect using protocol status codes and META
refresh tags are very easy to detect. Simply disabling auto-
redirection on the HTTP requests and checking the returned status
codes will catch HTTP redirects. Similarly, issuing HTTP HEAD
requests or quickly scanning the HEAD of the HTML page for
META refresh tags is sufficient to catch all META tag based
redirects. On the contrary, detecting JavaScript redirects is a very
challenging problem. JavaScript is a very versatile scripting
language and can produce a variety of execution behaviors. You
can also implement advanced hiding techniques that will easily
fool any simple token based parser or static code checker.
Server side scripting can also be used to perform redirection.
Server side redirection is implemented through scripts on the web
server. The most common use of server site redirects is to send
visitors to a custom error document when they enter an invalid
URL. It can also be used to gradually migrate users from an older
version of the web site to a newer version. It is technically more
demanding than META tags and JavaScript redirects. In this

paper, we limit our discussion to client side scripting and
redirections.

2. PREVIOUS WORK
Gyöngyi and H. Garcia-Molina [1] present a taxonomy of web
spam and describe redirection as a spam hiding technique. Wu
and Davison [9] conducted a preliminary study of the distribution
of redirection spam among the four types: HTTP 301, HTTP 302,
META refresh, and JavaScript onload. They could successfully
detect all 301, 302, and META refreshes. However, due to the
complicated nature of JavaScript redirects, they limited their
approach to detecting location.replace and window.location
substrings in the script tags of the web page. Benczúr et al [10]
found a number of doorway spam pages which used obfuscated
JavaScript code to redirect to their target. They comment that
detecting such redirections may already require certain expertise.
More recently, Niu et al [11] studied spamming in forums using a
“monkey program” [12] to visit each page using a web browser
and analyzed network traffic for redirections.
We could not find much previously published literature that
directly studied how prevalent, successful, or varied JavaScript
redirection is on the web. In this paper, we attempt to study
JavaScript redirections in detail. Our findings may also aid
spammers, but we hope that our observations and
recommendations make it easy to implement countermeasures.
The fight against web spam is an arms race. So, techniques
identified in the current work are representative of current
practices which may become obsolete in the future. However, our
recommended countermeasure for identifying script based
redirections is robust and will be successful in the long term.

3. JAVASCRIPT REDIRECTION
HTML pages use tags to describe the formatting, layout, and
structure of text-based information in a document. Tags exist for
specifying headings, paragraphs, lists, interactive forms,
embedded images, and other objects. Dynamic HTML (DHTML)
pages improve upon simple HTML pages by making them
interactive. They achieve this through the use of client-side
scripting languages (such as JavaScript), a presentation definition
language (Cascading Style Sheets, CSS), and a Document Object
Model (DOM).

Browsers that support DHTML expose two objects: window and
document. They can be accessed using the DOM and used to
retrieve information about the current browser window and the
currently loaded HTML document, respectively. When a window
is contained in one or more frames (frame/iframe), the
window.parent and window.top properties provide access to the
immediate- and top-most parent windows.
In the following, we present commonly used JavaScript features
that facilitate redirection, time delay, hiding, and dynamic code
injection. The treatment is neither exhaustive nor meant to be
recommended practice. Further, it is biased towards JavaScript
features we commonly encountered while analyzing JavaScript
redirection spam. In this regard, it is helpful in understanding
several redirection examples that we present in this paper.

3.1 JavaScript Features that Facilitate
Redirection
Redirection using JavaScript is achieved by changing the location
property on the window or document object.

3.1.1 Location property
One can control which page is loaded into the browser using the
JavaScript property window.location. The current web page can
be changed to a new URL by setting the location property to the
desired URL. If you wished to redirect all your visitors to
www2007.org when they arrived at your site you would just need
the following script:

<script type="text/JavaScript">
window.location = http://www2007.org/
</script>

Other variants include
document.location = "http://www2007.org/"
location.href = "http://www2007.org/"
location.replace("http://www2007.org/")

3.1.2 Time Delay
Delayed redirection can be achieved through several JavaScript
time delay functions. Several legitimate script redirections use
time delays in conjunction with notifications to walk the user
through the redirection and avoid confusion and security
concerns. The most common one we encountered is through the
use of the setTimeout function.

<script>
function delayed_redirect() { window.location = "http://www2007.org" }
</script>
</head>
<body onLoad="setTimeout('delayed_redirect()', 5000)">…</body>

3.2 JavaScript Features that Facilitate Hiding
A script is said to employ hiding techniques if its behavior cannot
be easily predicted using static analysis. We have observed that
legitimate JavaScript redirection rarely needs to use any
obfuscation or hiding techniques. Simple static analysis can be
used to not only identify whether the web page redirects, but also
which page(s) it redirects to. Static analysis can be as simple as
the use of well tailored regular expressions, or a light weight
JavaScript parser.

Programming languages vary in how amenable they are to static
analysis. While the behavior of some programs can be completely
determined through static analysis, others make it very difficult if
not impossible to do so (Turing’s halting problem [13] and similar
problems). JavaScript has several features that put it in the latter
category. Obfuscation, dynamic code generation, and self-
modifying JavaScript code are the three common recipes to
creating web pages that completely break static analysis.

3.2.1 Obfuscation and Eval
Simple obfuscation is typically achieved through short variable
names with random characters and bad formatting to throw off a
human reader. Advanced obfuscation techniques use random
looking static data in the script that is decoded to generate code
which is finally executed through eval. Obfuscation techniques in
programming languages (especially C) have enjoyed a lot of
recreational interest [19]. In JavaScript, eval takes a string of
JavaScript code and executes it. The string can contain an
expression, statement, or sequence of statements. The prevalent
misuse of eval in the JavaScript language has caused many
programmers to label eval as being evil2. The static data is usually

2 A quick search: http://www.google.com/search?q=eval+is+evil

brings up several results.

a long string of seemingly random characters. Decoding is
achieved through simple string concatenation, URL unescaping,
or custom string deciphering methods.

3.2.2 Dynamic Code Injection
The document.write and document.writeln methods can be used
to inject arbitrary HTML expressions into the specified document.
They can be used to add new script nodes to the HTML DOM and
queue up new script code for execution. Advanced script injection
schemes may add hyperlinks or forms and even simulate clicks
and form submits. The ability to examine existing script nodes
that have not yet been executed and modify or append to them
makes it virtually impossible to predict the final behavior of the
script without actually executing it.

4. DATA SET
To understand the prevalence and different types of JavaScript
redirection spam techniques on the web we adopted a three step
procedure. First, we sampled a large collection of web pages from
the web. Second, we tested them for JavaScript redirection spam.
In the third and final step, we manually analyzed a random
subsample to find commonly used techniques such as obfuscation
and dynamic code injection.

4.1 Labeling
Each web page was downloaded and tested for JavaScript
redirection using the procedure outlined in Figure 1. The web
page was loaded once in a browser with JavaScript disabled and a
second time with JavaScript enabled. After loading the page in the
browser and allowing all redirections (if any) to complete, the
destination URL (DstURL) was noted. If the destination URL for
the script enabled browser, DstURL(E), was the same as the
original URL, then the page was labeled as using no redirection.
Similarly if the destination URL for the script disabled browser,
DstURL(D), was the same as DstURL(E) the page was also
labeled as not using JavaScript redirection. If DstURL(D) ≠
DstURL(E), then the page was labeled as using JavaScript
redirection: URL ⇒ DstURL(E). These two URLs were compared
to determine if the JavaScript redirection was suspicious. Simple
rules were used to eliminate common non-spam redirections.
These included examples such as the following:

www2007.com => www2007.com/
www2007.com => www2007.com/{index,default,…}.{htm,html,asp,aspx,php,…}

JavaScript redirections within the same host were also labeled as
benign. All remaining JavaScript redirections were labeled as
JavaScript redirection spam. The above procedure is approximate
but was chosen as it is relatively straight forward to understand
and implement.

4.2 Sampling
Our initial goal was to understand how often JavaScript
redirection was being used on the web. However, a random
sampling approach did not yield enough samples3. Based on
sample URLs and corresponding domains that contained
significant concentrations of JavaScript redirection, we adopted
two biased sampling methods that were based on web page
popularity and blogs. The former is also motivated by previous
work that showed that popular pages are more likely to contain

3 Randomly sampling 100,000 URLs from a search engine’s index

(http://search.live.com) produced only a few tens of URLs using
JavaScript redirection.

web spam [14]. Blogging sites provide a shared authoring
environment that can become an attractor for web spam.
Popularity based sampling was achieved as in [14]. A list of the
top 5000 most popular English queries and their corresponding
top 200 search result URLs were collected using Live Search
(search.live.com). This resulted in a set of 782,937 unique URLs
that we labeled as being popular.
Based on our initial sampling, we chose blogspot.com as the
domain to explore JavaScript redirection spam in blogs. Others
have also indicated the high incidence of redirection spam in
Blogspot [11,15]. Using the top 100 most monetizable keywords
from Live Search (see [14]), we extracted 934,876 blog sites of
the form <name>.blogspot.com, where <name> contained one or
more of the keywords as a substring.

Figure 1. Labeling JavaScript Redirection Spam

5. PREVALENCE OF JAVASCRIPT
REDIRECTION SPAM
The 782,937 popular URLs and 934,876 Blogspot URLs were
downloaded and tested for JavaScript redirection spam. Table 1
presents the number of pages with JavaScript redirection spam
that were detected.

Table 1. Percentage occurrence of JavaScript redirection
among popular and blogspot.com pages

URL Type Count / Total Percentage

Popular 2,712 / 782,937 = 1 in 288 0.35%
Blogspot 7,196 / 934,876 = 1 in 130 0.77%

In comparison with popular pages, Blogspot pages are more than
twice as likely to contain JavaScript redirection spam. However,
in both cases, the occurrence of JavaScript redirection is less than
1 in 100. In [17], the average amount of spam in English web
pages was observed to be around 15%. Based on this, one can
very approximately estimate that about 2.3% (1 in 43) of popular
English spam pages and 5.1% (1 in 19) of Blogspot English spam
pages employ some form of JavaScript redirection.

6. JAVASCRIPT REDIRECTION SPAM
TECHNIQUES
In the following section, we examine current JavaScript
redirection techniques used by spammers and attempt to
categorize them based on their features. Along with descriptions
of the categories, we present real short examples from real web
pages that serve to effectively communicate how advanced some
of the techniques are. The original source URL is presented at the
bottom of each example. All examples are taken from those
reported in Table 1. They were chosen to be representative
samples from different categories. In the interests of saving space,
we biased the selection of representative samples in favor of
succinctness. Simple techniques are presented first and are
followed by more advanced ones, with simplicity being analogous
to ease of detection (through static analysis). After describing
these techniques, we present quantitative results on their
prevalence.

6.1 Plain
Plain JavaScript redirection is the simplest form we encountered.
The web page redirects the browser by directly changing the
location property (see Section 3.1.1) or uses an innocuous
conditional to redirect the user as in this example:

var1=24; var2=var1; if(var1==var2)
document.location="http://www.topsearch10.com/search.php?aid=59731&q=bad
+credit+auto+loan";

http://bad‐credit‐auto‐‐loan.blogspot.com/

6.2 String Manipulation and Eval
JavaScript redirection requires an eventual change of the location
property. In order to avoid presenting the whole destination URL
as a single string, a script can incrementally build up the URL
from pieces using string concatenation. Once the URL has been
pieced together, a simple call to eval can be used to set the
location property. One very straight forward example is presented
below. It is interesting to note that even in this simple example
eval is repeatedly applied in a for loop to retrieve each of the “a”
variables. This appears to be designed to throw off static parsers
that do not have the ability to aggregate constants in a JavaScript
program.

var a1="win", a2="dow.", a3="loca", a4="tion.", a5="replace",
a6="('http://www.partypoker.com/index.htm?wm=2501068')";
var i,str="";
for(i=1;i<=6;i++){
 str += eval("a"+i);
}
eval(str);

http://party‐poker‐bonus.cjb.net/

6.3 Unescape
Simple string manipulation to build up URL strings exposes
certain features such as substrings of “window.location” or
“location.replace” etc. This would allow such feature based

systems to have partial success in detecting string manipulation.
Obfuscation can be used to avoid discovery through direct checks
for substrings. URL encoding or percent-encoding is a common
mechanism intended for encoding reserved characters such as
!*’();:@&=+$,/?%#[] etc and binary data for script arguments.
However, the standard [18] discourages encoding for regular
characters, but without restricting the use of encoding to reserved
characters. Thus, unreserved characters such as “A” can be
represented as “%7E” and are expected to be processed correctly.
This feature is exploited by the following script for redirection
purposes.

var s =
'%5CBEOD%5C%05GDHJ_BDE%16%0CC__%5B%11%04%04%5C%5C%5C%05
SMYNNFD%5DBNX%05HDF%04%0C';
var e = '', i;
eval(unescape('s%3Dunescape%28s%29%3Bfor%28i%3D0%3Bi%3Cs.length%3Bi%2
B%2B%29%7Be%2B%3DString.fromCharCode%28s.charCodeAt%28i%29%5E43%29
%3B%7D%3Beval%28e%29%3B'));
http://freegayporntodays.blogspot.com/2006_10_01_freegayporntodays_archiv
e.html

Expanding the unescape produces the following which becomes
the argument for eval

s=unescape(s);
for(i=0;i<s.length;i++){e+=String.fromCharCode(s.charCodeAt(i)^43);};
eval(e)

which in turn takes us to decoding custom strings. The for loop
decodes the unescaped string (e) which is then evaluated to

window.location='http://www.xfreemovies.com/'

6.4 Decode
URL encoding makes it difficult for humans to read the URL
substrings. However, the original substring patterns present in the
unencoded function argument are left unchanged except for
syntactic substitutions. Thus a machine learning system [16, 17]
can just as easily learn to observe these URL encoded substring
patterns as the original patterns. To break this possibility, several
spammers appear to employ custom decoding schemes like the
one above (Section 6.3). Two interesting examples of custom
decoding are presented below:

var tt, kk="", mm;
tt="w|nd^w$l^c#[|^n;'([[*)!!*r^l|^n$|nf^!f>>d!s>#rc($*(*]q;c(>#*+c|g#r>[>s'";
for (i=0; i<tt.length+1; i++)
{
 mm=tt.substring (i,i+1);
 if (mm=="(") mm="h"; if (mm=="*") mm="p"; if (mm=="!") mm="/";
 if (mm==">") mm="e"; if (mm=="$") mm="."; if (mm=="[") mm="t";
 if (mm=="#") mm="a"; if (mm=="^") mm="o"; if (mm=="]") mm="?";
 if (mm=="@") mm="k"; if (mm=="{") mm="&"; if (mm==")") mm=":";
 if (mm==";") mm="="; if (mm=="|") mm="i"; if (mm==" ") mm="+";
 kk=kk+mm;
}
eval (kk);
http://cheap‐cigaretes‐2007.blogspot.com/2006/11/cheap‐cigarette‐online‐
cheap‐cigarette.html

function Decode(){
 var temp="",i,c=0,out=""; var
str="60!115!99!114!105!112!116!32!108!97!110!103!117!97!103!101!61!34!74!9
7!118!97!83!99!114!105!112!116!34!62!13!10!32!32!32!32!32!118!97!114!32!97
!49!61!39!119!105!110!100!39!44!32!13!10!32!32!32!32!32!97!50!61!39!111!11
9!46!108!111!99!97!39!44!13!10!32!32!32!32!32!97!51!61!39!116!105!111!110!
46!114!101!39!44!13!10!32!32!32!32!32!97!52!61!39!112!108!97!99!39!44!32!1

3!10!32!32!32!32!32!97!53!61!39!101!40!34!104!116!116!39!44!32!13!10!32!32!
32!32!32!97!54!61!39!112!58!47!47!39!44!32!13!10!32!32!32!32!32!97!55!61!39
!117!108!116!114!97!45!110!101!116!46!39!44!32!13!10!32!32!32!32!32!97!56!
61!39!105!110!102!111!47!116!105!99!107!101!116!47!115!101!97!114!39!44!3
2!13!10!32!32!32!32!32!97!57!61!39!99!104!46!112!104!112!63!39!44!32!13!10!
32!32!32!32!32!97!49!48!61!39!113!61!39!44!32!13!10!32!32!32!32!32!97!49!49
!61!39!67!104!101!97!112!43!65!105!114!102!97!114!101!34!41!39!59!13!10!32
!32!32!32!32!118!97!114!32!105!44!115!116!114!61!34!34!59!32!102!111!114!4
0!105!61!49!59!105!60!61!49!49!59!105!43!43!41!32!123!32!115!116!114!32!43
!61!32!101!118!97!108!40!34!97!34!43!105!41!59!32!125!13!10!32!32!32!32!32!
101!118!97!108!40!115!116!114!41!59!13!10!60!47!115!99!114!105!112!116!62!
";
 l=str.length;
 while(c<=str.length‐1) {
 while(str.charAt(c)!='!')
 temp=temp+str.charAt(c++);
 c++;out=out+String.fromCharCode(temp);temp="";
 }
 document.write(out);
}

http://cheap‐airfare‐a.blogspot.com/

6.5 Script Injection
The examples presented so far do not modify the DOM while
executing the redirect. As described in Section 3.2.2, executing
script code can inject more script code and queue up new script
instructions for execution. The following example uses a
combination of URL encoding to represent binary data that is
custom decoded to build a script tag with redirection code.

var s,q,e,d,i;s=String.fromCharCode;q='script'+s(62);
var e =
unescape('%BD%AD%BF%EE%BA%ED%F3%BA%A7%A0%BB%F6%E2%E1%B8%A7%
A6%FC%A5%B1%B9%AD%AE%A7%BB%B5%BA%FC%B0%BB%A6%E3%AC%AA%9B
%A2%B0%B1%B8%B1%B9%E3%F2%BD%A0%A5%A3%B1%B6%E9%FA%F5%FA%F8
%E9%A7%EC%BA%A7%A0%BB%E9%FE%8F%EA%E2%97%F7%E1%92%BB%A3%BF
%A7%E2%B3%B9%A7%B7%B5%A2%E2%BE%BA%AE%A2%FC%B5%BC%A7%B8%A5
%BD%E0%AC%BF%BC%F7%E1%92%BF%AD%A6%BA%AE%AA%F3%FE%B6%E9%AE
%BF%AE%AF%BF%B5%FD%B6%EE%B0%A4%AF%B8%A3%AA%BE%A5%E9%B7%FA
%A7%A3%AE%AF%BB%B9%BE%BC%EE%A1%F0');
var d = '';
for(i=0;i<e.length;++i) d+=s(e.charCodeAt(i)^(((i%10)+203)&255));
document.write(s(60)+q+d+s(60)+'/'+q);

http://pori‐chudai.igotclicks.com/taktaz

The decoded script tag which is injected using document.write
into the page is

<script>var u="http://www.veracitek.com/adTracker/?source=1976&w=
http%3A%2F%2Fpori‐chudai.star‐gossip.com%2Ftaktaz”,e=escape,d=document;
d.location=u;
</script>

6.6 HTML Element and Form Injection
Similar to injecting script nodes into the DOM, one can also inject
specific HTML elements and even forms. Here is one example
that injects a form into the web page:

document.write('<form id="f" method=post action="h' + 't' + 't' + 'p://' + 'qblz.c' +
'om/pc/i' + 'n.cgi?2¶meter=free%20ringtones" style=display:none><input
type=submit name="xlt2"></form>');
document.forms.f.xlt2.click();

http://downloadfree‐ringtones‐.blogspot.com/

6.7 Event Injection (Click/Submit)
Creation of such dynamic HTML content is usually followed by a
click or submit event that is injected. Here is an example that
creates a hyperlink and immediately injects a click event.

var lnk='<a id="rdr" href="http://fairsearch.net/rd/find.php?q=';lnk+=kwd;
lnk+='"> ';
document.write(lnk);
var obj = document.getElementById("rdr");
try{ obj.click();
} catch (MyError){ obj.click = function() {
 document.location.href = this.href; }
 obj.click();
}
http://live‐sex‐52817.blogspot.com/2006/09/free‐live‐sex‐chat‐nude‐strip‐
cam.html

6.8 Referrer Examination and Traffic
Counters
The goal of redirection spam pages is to rank themselves higher
than they deserve in search engine results pages for specific
queries. Once this has been achieved, the received traffic is routed
as desired. Owing to the differences in search engines and their
indexing and anti-spam strategies, redirection spam pages will
have different degrees of success on different search engines. We
found that many of the JavaScript redirection spam pages examine
the document.referrer property to take different actions for
different referrering pages. The following example demonstrates
one such case:

r = document.referrer;
if(r &&
 r.indexOf("google")>0 || r.indexOf("yahoo")>0 || r.indexOf("msn")>0 ||
 r.indexOf("live")>0 || r.indexOf("search.blogger.com")>0 ||
 r.indexOf("ask.com")>0){
 if(r.indexOf(document.domain)<0 && r.indexOf("link%3A")<0 &&
 r.indexOf("linkdomain%3A")<0 && r.indexOf("site%3A")<0) {
document.location.replace('http://lipster.net/redirect.php?blogId=14085&addkey
=bBI&ref='+escape(r)+'&dom='+escape(document.domain)+'&blog_url='+location.
href);
}
else{
 if ((r=="" || r==null) && parent.frames.length > 1){
document.location.replace('http://lipster.net/redirect.php?blogId=14085&addkey
=bBI&ref='+escape("from frame:
?q=UNKNOWN_KEYWORD")+'&dom='+escape(document.domain)+'&blog_url='+lo
cation.href);
 }
 else{
 document.location.replace ('http://follar‐sexo‐conocer.com/partner');
 }
}

http://redfreenatio128.blogspot.com/

7. PREVALENCE OF DIFFERENT
TECHNIQUES
In order to study the prevalence of the variety of techniques
described in Section 6, we randomly sampled and studied
individual JavaScript programs from Table 1. We randomly
sampled 175 JavaScript redirection spam pages from the 2,712
popular pages. Similarly, we sampled another 175 JavaScript
redirection spam pages from the 7,196 detected Blogspot pages.
Each sampled JavaScript redirection spam page was manually
analyzed. We used a simple JavaScript parser/editor to understand
the static structure and exploits used by the scripts. Using a
JavaScript runtime engine, we also deobfuscated and executed
each program one instruction at a time to understand its runtime
behavior and exploits. Based on this analysis, we labeled each of
the 175 samples in both categories with the types of exploits they
used.

Figure 2 depicts the percentage of JavaScript redirection spam
pages using each of the techniques. The Advanced/AJAX
category represents web pages that used a lot of JavaScript code
(hundreds of lines) or were using AJAX [20] features.
The popularity ranking of different techniques is similar between
the popular and Blogspot pages with minor differences. It is
interesting to note that popular pages are almost twice as likely to
use plain redirection than Blogspot pages. We were surprised to
find that nearly 62% (108/175) of the Blogspot pages and 44%
(77/175) of the popular pages used some form of obfuscation
(Unescape or Decode). Further, almost a quarter (25% for
Blogspot and 23% for popular) of all JavaScript redirection spam
pages examine the originating URL of the browser
(document.referrer property) before redirecting the user.
Dynamic code injection through the addition of script and form
elements occurred in 25% (44/175) and 9% (16/175) of the
Blogspot and popular pages, respectively. Advanced use of
JavaScript made up less than 10% of the pages.
Figure 3 presents a histogram of the number of different
JavaScript techniques used by popular and Blogspot redirection
spam pages. Over 40% of popular redirection spam pages use
only a single technique. However, about 85% of Blogspot pages
used at least two different techniques. The average number of
different JavaScript techniques used was 1.83 and 2.64 for
popular and Blogspot JavaScript redirection pages. While none of
the popular pages used more than 4 different techniques, some
Blogspot pages used as many as 7 (of 12 possible) different
techniques.

8. DISCUSSION
JavaScript redirection spam is one of the most notorious
redirection spam techniques. It exploits script weaknesses
common among today’s crawlers to redirect unsuspecting users to
spam sites.
Current antispam efforts [16, 17] rely on static sources of
information such as URLs, domain names, domain IPs,
distribution of page content, distribution of links, etc. Statistical
and machine learning techniques are effective against such static
web pages. However, JavaScript adds a new level of complexity
which requires understanding program behavior before it is
executed in a browser. With the increase of dynamic content on
the web, crawlers and search engines cannot afford to be script-
agnostic.
The adversarial nature of web spam produces an arms race
wherein the spammers try to be one step ahead of the anti-spam
techniques by finding new exploits. The anti-spam community
attempts to counter by reacting as quickly as possible to new spam
techniques. Our analysis of the current JavaScript redirection
spam techniques shows that JavaScript obfuscation is very
prevalent in JavaScript redirection spam. These obfuscation
techniques limit the effectiveness of static analysis and static
feature based systems. Machine learning based systems that
exploit statistical features will only be partially effective and may
need to be retrained often. Even if static analysis techniques can
detect whether a page redirects or not with high probability, they
will not be able to determine the destination URL. The difference
between a benign redirect and a suspicious redirect requires a
system to precisely determine the destination URL. Further,
advanced dynamic code and event injection techniques require
dynamic analysis.

Based on our findings, we advocate the use of light weight
JavaScript parser(s) and a tuned JavaScript execution environment
for predicting the redirection behavior of web pages containing
JavaScript. Such a system would be robust to many types of
JavaScript exploits. Further, it would not only be able to detect
whether a page redirects or not, but also be capable of extracting
the destination URL(s). A deeper analysis can also address page
redirection behavior in response to certain events such as time
delays and mouse moves. Since the only intended purpose of the
parser and script execution environment is to detect JavaScript
redirection spam, we believe that such a system can be tuned for
high performance and throughput. We plan to explore such high
performance JavaScript redirection detection systems in future
work.

9. ACKNOWLEDGMENTS
We would like to thank Chau Luu for her help in our labeling
efforts and the anonymous reviewers for their valuable feedback.

10. REFERENCES
[1] Z. Gyöngyi and H. Garcia-Molina (2005), “Web spam

taxonomy,” First International Workshop on Adversarial
Information Retrieval on the Web (AIRWeb), Japan, 2005.

[2] Mozilla Foundation, “About JavaScript,” Online at
http://developer.mozilla.org/en/docs/About_JavaScript

[3] Microsoft, “JScript Reference,” Online at
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/jscript7/html/jslrfjscriptlanguagereference.asp

[4] Ecma International, “ECMAScript,” Online at
http://www.ecma-international.org/publications/standards/
ECMA-262.htm

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, and T. Berners-Lee, “RFC 2616: Hypertext Transfer
Protocol -- HTTP/1.1,” Online at ftp://ftp.isi.edu/in-
notes/rfc2616.txt

[6] Google, Inc. Google information for webmasters, 2007.
Online at http://www.google.com/webmasters/faq.html.

[7] Yahoo! Inc. Yahoo! Help - Yahoo! Search, 2007. Online at
http://help.yahoo.com/help/us/ysearch/deletions/.

[8] Microsoft, Inc. Live Search Site Owner Help, 2007. Online
at http://help.live.com/help.aspx?project=wl_webmasters

[9] B. Wu and B. D. Davison (2005) “Cloaking and Redirection:
A Preliminary Study,” First International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb),
Chiba, Japan, 2005.

[10] A. Benczúr, K. Csalogány, T. Sarlós, M. Uher, “SpamRank -
- Fully Automatic Link Spam Detection,” First International
Workshop on Adversarial Information Retrieval on the Web
(AIRWeb), Chiba, Japan, 2005.

[11] Y. Niu, Y. Wang, H. Chen, M. Ma, and F. Hsu, “A
Quantitative Study of Forum Spamming Using Context-
based Analysis,” Proceedings of the 14th Annual Network
and Distributed System Security Symposium (NDSS), San
Diego, CA, February, 2007.

[12] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S.
Chen, and S. King, “Automated Web Patrol with Strider
HoneyMonkeys: Finding Web Sites That Exploit Browser
Vulnerabilities,” In Proc. Network and Distributed System
Security (NDSS) Symposium, February 2006.

[13] A. Turing, “On computable numbers, with an application to
the Entscheidungsproblem,” Proceedings of the London
Mathematical Society, Series 2, 42 (1936), pp 230-265.

[14] K. Chellapilla and M. Chickering, “Improving Cloaking
Detection using Search Query Popularity and
Monetizability,” Second Intl. Workshop on Adversarial
Information Retrieval on the Web (AIRWEB’2006), Seattle,
USA

[15] C. Pirillo. 2005. Google: Kill blogspot already!!! available
online at http://chris.pirillo.com/blog/archives/2005/10/16/
1302867.html.

[16] D. Fetterly, M. Manasse, and M. Najork (2004), “Spam,
damn spam, and statistics: Using statistical analysis to locate

spam web pages,” In Proceedings of WebDB, pages 1-6,
June 2004.

[17] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly (2006),
“Detecting Spam Web Pages through Content Analysis,” In
Proceedings of the World Wide Web Conference 2006
(WWW'06). Edinburgh, United Kingdom, May 23-26, 2006.

[18] T. Berners-Lee, R. Fielding, and L. Masinter, “RFC 3986:
Uniform Resource Identifier (URI): Generic Syntax,” online
at http://www.ietf.org/rfc/rfc3986.txt

[19] International Obfuscated C Code Contest,
http://www0.us.ioccc.org/main.html

[20] Asynchronous JavaScript and XML (AJAX) programming.
http://en.wikipedia.org/wiki/AJAX

Figure 2. The distribution of JavaScript techniques used in JavaScript Redirection Spam. Note that each webpage sample can use

more than one technique, thus the percentages do not add up to 100. The mean number of techniques used by popular and blogspot
pages was 1.83 and 2.64, respectively. Thus, they add up to 183% and 264% for popular and blogspot pages, respectively.

Figure 3. The distribution of the number of different JavaScript techniques used in JavaScript Redirection Spam. The mean

number of techniques used was 1.83 and 2.64 for popular and blogspot JavaScript Redirection Spam pages, respectively.

0%

10%

20%

30%

40%

50%

60%

Pe
rc
en

ta
ge

 o
f J
av
aS
cr
ip
t R

ed
ir
ec
ti
on

 S
pa

m

Pa
ge
s
U
si
ng

 th
e
Te
ch
ni
qu

e

JavaScript Technique

POPULAR BLOGSPOT

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7

Pe
rc
en

ta
ge

 o
f J
av
aS
cr
ip
t

Re
di
re
ct
io
n
Sp
am

Number of Techniques Used

POPULAR BLOGSPOT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

