Content-based Web Spam Detection

Gordon V. Cormack

When you have a hammer ...

Everything looks like a nail! Hammer:

Content-based *email* spam filters Dynamic Markov Compression (DMC) Orthogonal Sparse Bigrams (OSBF-Lua) Stacking multiple filter results Combining results with logistic regression Nail:

The Web Spam Challenge

Detailed results Task B:

Rank Task B	Average AUC	Team
1	0.946469	Gordon Cormack University of Waterloo, Canada
2	0.918251	Nikolaos Trogkanis, National Technical University of Athens, Greece Georgios Paliouras, National Center of Scientific Research "Demokritos", Greece
3	0.907398	Kushagra Gupta, Vikrant Chaudhary, Nikhil Marwah, Chirag Taneja Inductis India Pvt Ltd
4	0.899241	D'yakonov Alexander Moscow State University, Russia
5	0.893333	Wenyuan Dai Apex Data & Knowledge Management Lab, Shanghai Jiao Tong University

DMC colors spam red, non-spam green

www.lmg2-dvd.co.uk www.f2films.co.uk www.gifthunt.co.uk www.gifthunt.co.uk www.home-loans-online.co.uk www.abfinance.co.uk www.insurance-quote.co.uk irish-swingers.connect4fun.co.uk lib1.leeds.ac.uk www.babyfriendly.org.uk

Non-spam (normal) libl.leeds.ac.uk
www.babyfriendly.org.uk
www.learningservices.org.uk
www.preparingforemergencies.gov.uk
www.hintsandthings.co.uk
www.guardian.co.uk
www.psnc.org.uk

DMC applied to what?

Text! (actually, any stream of bits)

hostname

of host to be classified of incoming links of outgoing links

html content

page(s) on host (which pages?)
text, markup, formatting (just a bit stream to DMC)
excerpts of pages (first or last 2500 bytes)
http server response

10 filters in total (9 DMC, 1 OSBF-Lua)

Each run yields a spamminess score s_n for each host

Convert to *log-odds* L_n using training data

$$\begin{split} L_n = \log(\frac{\left|\{i \ | \ s_i \leq s_n \text{and ith message is spam}\}\right| + \epsilon}{\left|\{i \ | \ s_i \geq s_n \text{and ith message is ham }\right\}| + \epsilon}) \end{split}$$

Naïve combination

sum L_n over all runs

Slightly better combination

logistic regression to compute weighted sum

Results (10-fold cross validation)

Method	AUC	F_1	weight
homebig	.939	.634	.064
homebig.tail	.938	.626	.056
httponly	.867	.481	.124
bodyonly	.933	.627	.184
wget	.942	.622	.121
wget.tail	.942	.619	.135
wget.osbf	.929	.635	.200
hostname	.864	.424	.095
ingraph	.952	.639	.383
outgraph	.834	.289	.021
log-odds	.975	.796	-
logistic	.980	.803	-

Combine all Web Spam Challenge Submissions! Really, really naïve approach spamminess = # spam votes among participants Naïve approach requires training results for log-odds calculation Logistic regression requires training results for weight calculation Let's build the ultimate filter send me your data (training + test) gvcormac@uwaterloo.ca

Content-based Web Spam Detection

Gordon V. Cormack

This example implements a 1st order Markov model A means *following 0*; B means *following 1* Outputs f on edges are frequencies Prob(1 *following* A) = 4 / (2 + 4) = 0.667 f incremented after each transition

State A, input 1, Prob 0.67

B visited 16 times previously

4 from A; 12 from elsewhere

B should be cloned because it is visited from distinct contexts several times B cloned to create B'

f divided in 4:12 ratio in proportion to previous visits

f incremented as usual