TRANSDUCTIVE LINK SPAM DETECTION

Denny Zhou
Microsoft Research
http://research.microsoft.com/~denzho

Joint work with Chris Burges and Tao Tao

Presenter: Krysta Svore
Link spam detection problem

Classification on a web graph. Those nodes are labeled as two classes, normal and spam web pages.
Basic characters of link spam

- Spam websites generally link to each other, e.g. link farms and link exchange, to boost their link-based rank. In particular, if a website links to spam websites, then it is likely that the website is spam.
- It is unlikely that normal websites link to spam websites. If a website is linked by a normal website, then it is likely that the website is normal.

Spam posts on blogs do not coincide with these two characters.
State-of-the-arts on link spam detection: PageRank based

Restrictions with TrustRank and Anti-Trust or BadRank:

- Do not utilize good and spam examples simultaneously.
- It is unclear what is optimized in those approaches. Consequently, there is no guarantee on their performance.
State-of-the-arts on link spam detection: Supervised Learning

- Machine Learning algorithms with link features
- Link features: indegree distribution, outdegree distribution, degree correlation, · · ·
- Machine learning algorithms: neural networks, SVMs, Boosting, · · ·
Restrictions on Supervised Learning

- Link features for spam are generally extracted from large and popular websites. Thus those websites are not from uniform sampling. The biased sampling leads to potentially high generalization risks.
- We often have very few training examples to utilize because it is costly to label spam by human judgements, while those classical machine learning approaches need a large amount of training examples.
- It might be hard to understand the feature manipulation/combination in the supervised learning process. The understanding is important in spam detection however.
Our methodology: Beyond PageRank and beyond supervised learning

- Cast link spam detection into a semi-supervised learning issue on directed graphs such that we can utilize both labeled and unlabeled examples.
- Develop discrete analogue of classical regularization theory which is widely used in machine learning, e.g. SVMs, and derive our classification algorithm from the discrete regularization.
What is regularization?

- A typical regularization looks like:

$$\arg\min_{f \in \mathcal{F}} \left\{ \Omega(f) + C \sum_{i=1}^{m} L(f_i, y_i) \right\}$$

The first term is for smoothing, and the second term for fitting the given training examples.

- For example, one may define $$\Omega(f) = \int \| \nabla f \|^2$$, and $$L(f_i, y_i) = (f_i - y_i)^2$$.
What is regularization? (Cont.)

- Other choices for loss: hinge loss, precision/recall, F_1-score, ROC-Area, · · ·
- Other choices for regularizer: kernels, Large margin, spline, hidden layer of neural networks, entropy · · ·

Regularization on graphs: let a function change slowly over densely connected subgraphs.
Function spaces on graphs

- Given a directed graph $G = (V, E, w)$, define a random walk on the graph such that it has a unique stationary distribution. Let $p(u, v)$ denotes the transition probability from u to v, and π denotes the stationary distribution.

- Let $c(e) = \pi(e^-)p(e)$. The number $c(e)$ is called the ergodic flow on e. It is easy to check that the ergodic flow is a circulation, that is,

$$\sum_{\{e | e^- = v\}} c(e) = \sum_{\{e | e^+ = v\}} c(e), \forall v \in V.$$
Let $\mathcal{F}(V)$ denote the set of all real-valued functions on V. A Hilbert space $\mathcal{H}(V)$ over $\mathcal{F}(V)$ can be constructed with the inner product defined by

$$\langle \varphi, \phi \rangle_{\mathcal{H}(V)} = \sum_{v \in V} \varphi(v) \phi(v) \pi(v),$$

where $\varphi, \phi \in \mathcal{F}(V)$.
Function spaces on graphs (Cont.)

- Let $\mathcal{F}(V)$ denote the set of all real-valued functions on V. A Hilbert space $\mathcal{H}(E)$ over $\mathcal{F}(E)$ can be constructed with the inner product defined by

$$\langle \vartheta, \psi \rangle_{\mathcal{H}(E)} = \sum_{e \in E} \vartheta(e) \psi(e) c(e),$$

where $\vartheta, \psi \in \mathcal{F}(E)$.
Discrete operators: gradient

We define the *discrete gradient* $\nabla : \mathcal{H}(V) \mapsto \mathcal{H}(E) \in$ as an operator

$$(\nabla \varphi)(e) := \varphi(e^+) - \varphi(e^-), \forall \varphi \in \mathcal{H}(V).$$
Discrete operators: divergence

As in the continuous case, we define the discrete divergence \(\text{div} : \mathcal{H}(E) \mapsto \mathcal{H}(V) \) as the dual of \(-\nabla \), that is,

\[
\langle \nabla \varphi, \psi \rangle_{\mathcal{H}(E)} = \langle \varphi, -\text{div} \, \psi \rangle_{\mathcal{H}(V)},
\]

where \(\varphi \in \mathcal{H}(V) \), \(\psi \in \mathcal{H}(E) \).
Discrete operators: Laplacian

We define the discrete Laplacian $\Delta : \mathcal{H}(V) \leftrightarrow \mathcal{H}(V)$ by

$$
\Delta := - \text{div} \circ \nabla.
$$
Discrete analogue of regularization

Given a graph $G = (V, E, w)$, the vertices in a subset S have been labeled as spam or normal. Define a function y with $y(v) = 1$ or -1 if $v \in S$, and 0 if $v \in S^c$. For classifying those unclassified vertices in S^c, we define a discrete regularization

$$\argmin_{\varphi \in \mathcal{H}(V)} \left\{ \|\nabla \varphi\|^2_{\mathcal{H}(E)} + C \|\varphi - y\|^2_{\mathcal{H}(V)} \right\},$$

where $C > 0$ is the regularization parameter.
Link spam detection algorithm

1. Define a random walk which chooses an inlink uniformly at random to follow. Formally, this random walk has the transition probabilities

\[p(u, v) = \frac{w(v, u)}{d^-(u)}, \]

for any \(u, v \) in \(V \). Let \(\pi \) denote the vector which satisfies

\[\sum_{u \in V} \pi(u)p(u, v) = \pi(v). \]
2. Denote by P the matrix with the elements $p(u, v)$, and Π the diagonal matrix with the diagonal elements $\pi(u)$. Form the matrix

$$L = \Pi - \alpha \frac{\Pi P + P^T \Pi}{2},$$

where α is a parameter in $(0, 1)$.

3. Define a function y on V with $y(v) = 1$ or -1 if vertex v is labeled as normal or spam, and 0 if v is unlabeled. Solve the linear system

$$L \varphi = \Pi y,$$

and classify each unlabeled vertex v as $\text{sgn} \ \varphi(v)$.
Experimental results
Experimental results (Cont.)
Conclusion and discussion

• We developed discrete regularization and learning on graphs;
• The basic intuition is to let the classification function change slowly over densely connected subgraphs;
• It is not necessary to extract so-called features from link structures;
• The algorithm be implemented via solving a sparse and symmetric linear system

For combining link and content features in a clean and effective way, please go to our ICML07 paper.
Acknowledgments

We would like to thank Kumar Chellapilla of Microsoft Live Labs for his help on this work.