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Link spam detection problem

Classification on a web graph. Those nodes are labeled as two classes,

normal and spam web pages.

1



Basic characters of link spam

• Spam websites generally link to each other, e.g. link farms and link

exchange, to boost their link-based rank. In particular, if a website

links to spam websites, then it is likely that the website is spam.

• It is unlikely that normal websites link to spam websites. If a website

is linked by a normal website, then it is likely that the website is

normal.

Spam posts on blogs do not coincide with these two characters.
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State-of-the-arts on link spam detection:
PageRank based

Restrictions with TrustRank and Anti-Trust or BadRank:

• Do not utilize good and spam examples simultaneously.

• It is unclear what is optimized in those approaches. Consequently,

there is no guarantee on their performance.
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State-of-the-arts on link spam detection:
Supervised Learning

• Machine Learning algorithms with link features

• link features: indegree distribution, outdegree distribution, degree

correlation, · · ·
• Machine learning algorithms: neural networks, SVMs, Boosting, · · ·
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Restrictions on Supervised Learning

• Link features for spam are generally extracted from large and popular

websites. Thus those websites are not from uniform sampling. The

biased sampling leads to potentially high generalization risks.

• We often have very few training examples to utilize because it is costly

to label spam by human judgements, while those classical machine

learning approaches need a large amount of training examples.

• It might be hard to understand the feature manipulation/combination

in the supervised learning process. The understanding is important

in spam detection however.
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Our methodology: Beyond PageRank and
beyond supervised learning

• Cast link spam detection into a semi-supervised learning issue on

directed graphs such that we can utilize both labeled and unlabeled

examples.

• Develop discrete analogue of classical regularization theory which

is widely used in machine learning, e.g. SVMs, and derive our

classification algorithm from the discrete regularization.
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What is regularization?

• A typical regularization looks like

argmin
f∈F

{
Ω(f) + C

m∑
i=1

L(fi, yi)

}

The first term is for smoothing, and the second term for fitting the

given training examples.

• For example, one may define Ω(f) =
∫
‖∇f‖2, and L(fi, yi) =

(fi − yi)
2.
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What is regularization? (Cont.)

• Other choices for loss: hinge loss, precision/recall, F1-score, ROC-

Area, · · ·
• Other choices for regularizer: kernels, Large margin, spline, hidden

layer of neural networks, entropy · · ·

Regularization on graphs: let a function change slowly over densely

connected subgraphs.
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Function spaces on graphs

• Given a directed graphG = (V,E,w), define a random walk on the

graph such that it has a unique stationary distribution. Let p(u, v)

denotes the transition probability from u to v, and π denotes the

stationary distribution.

• Let c(e) = π(e−)p(e). The number c(e) is called the ergodic flow

on e. It is easy to check that the ergodic flow is a circulation, that is,∑
{e|e−=v}

c(e) =
∑

{e|e+=v}

c(e), ∀v ∈ V.
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Function spaces on graphs (Cont.)

• Let F(V ) denote the set of all real-valued functions on V. A Hilbert

space H(V ) over F(V ) can be constructed with the inner product

defined by

〈ϕ, φ〉H(V ) =
∑
v∈V

ϕ(v)φ(v)π(v),

where ϕ, φ ∈ F(V ).
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Function spaces on graphs (Cont.)

• Let F(V ) denote the set of all real-valued functions on V. A Hilbert

space H(E) over F(E) can be constructed with the inner product

defined by

〈ϑ, ψ〉H(E) =
∑
e∈E

ϑ(e)ψ(e)c(e),

where ϑ, ψ ∈ F(E).
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Discrete operators: gradient

We define the discrete gradient ∇ : H(V ) 7→ H(E) ∈ as an operator

(∇ϕ) (e) := ϕ(e
+
)− ϕ(e

−
), ∀ϕ ∈ H(V ).
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Discrete operators: divergence

As in the continuous case, we define the discrete divergence

div : H(E) 7→ H(V ) as the dual of −∇, that is,

〈∇ϕ, ψ〉H(E) = 〈ϕ,− divψ〉H(V ),

where ϕ ∈ H(V ), ψ ∈ H(E).
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Discrete operators: Laplacian

We define the discrete Laplacian ∆ : H(V ) 7→ H(V ) by

∆ := − div ◦∇.
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Discrete analogue of regularization

Given a graph G = (V,E,w), the vertices in a subset S have been

labeled as spam or normal. Define a function y with y(v) = 1 or −1

if v ∈ S, and 0 if v ∈ Sc. For classifying those unclassified vertices in

Sc, we define a discrete regularization

argmin
ϕ∈H(V )

{
‖∇ϕ‖2

H(E) + C‖ϕ− y‖2
H(V )

}
,

where C > 0 is the regularization parameter.
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Link spam detection algorithm

1. Define a random walk which chooses an inlink uniformly at random

to follow. Formally, this random walk has the transition probabilities

p(u, v) =
w(v, u)

d−(u)
,

for any u, v in V. Let π denote the vector which satisfies∑
u∈V

π(u)p(u, v) = π(v).
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2. Denote by P the matrix with the elements p(u, v), and Π the

diagonal matrix with the diagonal elements π(u). Form the matrix

L = Π− α
ΠP + P TΠ

2
,

where α is a parameter in (0, 1).

3. Define a function y on V with y(v) = 1 or −1 if vertex v is labeled

as normal or spam, and 0 if v is unlabeled. Solve the linear system

Lϕ = Πy,

and classify each unlabeled vertex v as sgnϕ(v).
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Experimental results

18



Experimental results (Cont.)
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Conclusion and discussion

• We developed discrete regularization and learning on graphs;

• The basic intuition is to let the classification function change slowly

over densely connected subgraphs;

• It is not necessary to extract so-called features from link structures;

• The algorithm be implemented via solving a sparse and symmetric

linear system

For combining link and content features in a clean and effective way,

please go to our ICML07 paper.
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