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Link spam detection problem

Classification on a web graph. Those nodes are labeled as two classes,
normal and spam web pages.




Basic characters of link spam

e Spam websites generally link to each other, e.g. link farms and link
exchange, to boost their link-based rank. In particular, if a website
links to spam websites, then it is likely that the website is spam.

e It is unlikely that normal websites link to spam websites. If a website
is linked by a normal website, then it is likely that the website is
normal.

Spam posts on blogs do not coincide with these two characters.



State-of-the-arts on link spam detection:
PageRank based

Restrictions with TrustRank and Anti-Trust or BadRank:

e Do not utilize good and spam examples simultaneously.

e It is unclear what is optimized in those approaches. Consequently,
there is no guarantee on their performance.



State-of-the-arts on link spam detection:
Supervised Learning

e Machine Learning algorithms with link features
e link features: indegree distribution, outdegree distribution, degree

correlation, -
e Machine learning algorithms: neural networks, SVMs, Boosting, - - -



Restrictions on Supervised Learning

e Link features for spam are generally extracted from large and popular
websites. Thus those websites are not from uniform sampling. The
biased sampling leads to potentially high generalization risks.

e \We often have very few training examples to utilize because it is costly
to label spam by human judgements, while those classical machine
learning approaches need a large amount of training examples.

e It might be hard to understand the feature manipulation /combination
in the supervised learning process. The understanding is important
in spam detection however.



Our methodology: Beyond PageRank and
beyond supervised learning

e (Cast link spam detection into a semi-supervised learning issue on
directed graphs such that we can utilize both labeled and unlabeled
examples.

e Develop discrete analogue of classical regularization theory which
is widely used in machine learning, e.g. SVMs, and derive our
classification algorithm from the discrete regularization.



What is regularization?

e A typical regularization looks like

argmin {Q(f) +C Z L(fi, ?Jz)}

The first term is for smoothing, and the second term for fitting the
given training examples.

e For example, one may define Q(f) = [ ||V fII?, and L(fi,y:) =
(fi — yi)?.



What is regularization? (Cont.)

e Other choices for loss: hinge loss, precision/recall, Fj-score, ROC-
Area, - -

e Other choices for regularizer: kernels, Large margin, spline, hidden
layer of neural networks, entropy - - -

Regularization on graphs: let a function change slowly over densely
connected subgraphs.



Function spaces on graphs

e Given a directed graph G = (V, E, w), define a random walk on the
graph such that it has a unique stationary distribution. Let p(u, v)
denotes the transition probability from w to v, and 7 denotes the
stationary distribution.

o Let c(e) = w(e )p(e). The number c(e) is called the ergodic flow
on e. It is easy to check that the ergodic flow is a circulation, that is,

Z cle) = Z c(e), Vv e V.

{ele™=v} {eleT=0v}



Function spaces on graphs (Cont.)

e Let F (V) denote the set of all real-valued functions on V. A Hilbert
space H (V') over F (V') can be constructed with the inner product

defined by
(o, ¢>H(V) = Z p(v)p(v)m(v),

veV
where ¢, ¢ € F(V).
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Function spaces on graphs (Cont.)

e Let F (V) denote the set of all real-valued functions on V. A Hilbert
space H(FE) over F(FE) can be constructed with the inner product

defined by
<7~97 ¢>H(E) — Z ﬁ(e)w(e>c(e)a

eck
where ¥, ¢ € F(E).
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Discrete operators: gradient

We define the discrete gradient V : H(V') — H(FE) € as an operator

(V) () :=p(e") — (), Ve € H(V).
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Discrete operators: divergence

As in the continuous case, we define the discrete divergence
div : H(E) — H(V) as the dual of —V, that is,

<v907 ¢>’H(E) — <<)07 — divw>H(V)7

where o € H(V), ¢ € H(E).
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Discrete operators: Laplacian

We define the discrete Laplacian A : H(V') — H(V) by

A = —divoV.
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Discrete analogue of regularization

Given a graph G = (V, E, w), the vertices in a subset S have been
labeled as spam or normal. Define a function y with y(v) = 1 or —1
if v € S,and 0 if v € S°. For classifying those unclassified vertices in
S, we define a discrete regularization

. 2 2
argmin { [V ll3) + Clie = yll5) } »
pEH(V)

where C' > 0 is the regularization parameter.
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Link spam detection algorithm

1. Define a random walk which chooses an inlink uniformly at random
to follow. Formally, this random walk has the transition probabilities

w(v, u)

p(u,v) = d——(u)’

for any u, v in V. Let 7 denote the vector which satisfies

Y w(u)p(u,v) = w(v).

ueV
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2. Denote by P the matrix with the elements p(u,v), and II the
diagonal matrix with the diagonal elements 7(w). Form the matrix

1P + P11
L =1 — « 5 ,

where «v is a parameter in (0, 1).

3. Define a function y on V' with y(v) = 1 or —1 if vertex v is labeled
as normal or spam, and O if v is unlabeled. Solve the linear system

Ly = 11y,

and classify each unlabeled vertex v as sgn ¢ (v).
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Experimental results
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Experimental

results (Cont.)
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Conclusion and discussion

o \We developed discrete regularization and learning on graphs;

e The basic intuition is to let the classification function change slowly
over densely connected subgraphs;

e |t is not necessary to extract so-called features from link structures;

e The algorithm be implemented via solving a sparse and symmetric
linear system

For combining link and content features in a clean and effective way,
please go to our ICMLO7 paper.
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