Latent Dirichlet allocation in web spam filtering

István Bíró1 Jácint Szabó1 András A. Benczúr1

1Data Mining and Web Search Group
Computer and Automation Institute
Hungarian Academy of Sciences

AIRWeb Workshop, April 22, 2008, Beijing, China.
Latent Dirichlet allocation

- Blei, Ng, Jordan, 2003
- fully generative statistical natural language model
- extension of latent semantic indexing (LSI)
- has better perplexity than LSI
- a lot of extensions and variations of LDA were developed and successfully applied
Latent Dirichlet allocation

Model

- topic: distribution over the words
- document: distribution over the topics
- for every word-position of the corpus, draw a topic for that document, and then draw a word for that topic

Inference by Gibbs sampling

- Markov chain Monte Carlo method
- running time $O((\#\text{topics}) \cdot (\#\text{word pos's}) \cdot (\#\text{iterations}))$
Latent Dirichlet allocation

Model

- topic: distribution over the words
- document: distribution over the topics
- for every word-position of the corpus, draw a topic for that document, and then draw a word for that topic

Inference by Gibbs sampling

- Markov chain Monte Carlo method
- running time $O((\#\text{topics}) \cdot (\#\text{word pos’s}) \cdot (\#\text{iterations}))$
Latent Dirichlet allocation

In practice

- given a collection of documents
- keep only semantic words, delete stopwords, stem
- create vocabulary
- choose an appropriate topic-number (about 100)
- make model inference to create the model
- for a topic, the word distribution gives a semantic theme
- for a document, the topic distribution describes to which themes it belongs
- for a new document, make unseen inference to get its topic distribution
In practice
- given a collection of documents
- keep only semantic words, delete stopwords, stem
- create vocabulary
- choose an appropriate topic-number (about 100)
- make model inference to create the model
- for a topic, the word distribution gives a semantic theme
- for a document, the topic distribution describes to which themes it belongs
- for a new document, make unseen inference to get its topic distribution
In practice

- given a collection of documents
- keep only semantic words, delete stopwords, stem
- create vocabulary
- choose an appropriate topic-number (about 100)
- make model inference to create the model
- for a topic, the word distribution gives a semantic theme
- for a document, the topic distribution describes to which themes it belongs
- for a new document, make unseen inference to get its topic distribution
Multi-corpus LDA

- two corpora: labeled spam and nonspam sites
- build two separate LDA models on them, with k_s and k_n topics
- aggregate these models to get $k_s + k_n$ topics
- make unseen inference for every unlabeled site, and get its topic-distribution: $\sum_{1 \leq i \leq k_s} p_i^s + \sum_{1 \leq i \leq k_n} p_i^n = 1$
- the total probability of spam topics, $\sum_{1 \leq i \leq k_s} p_i^s$, gives a spamness feature

Similar to the compression based spam filter of Cormack, applied with success at Web Spam Challenge 2007.
Multi-corpus LDA on UK2007-WEBSpAM, apparently primarily content spammed

- ~ 115000 sites
- ~ 200 labeled as spam
- ~ 3800 labeled as nonspam

- document: concatenation of all pages of a site
- topic numbers: $k_s = 10$ and $k_n = 50$
Tests

Most frequent words in some topics

<table>
<thead>
<tr>
<th>Spam topic 7</th>
<th>Nonspam topic 4</th>
<th>Nonspam topic 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>loan (0.080)</td>
<td>club (0.035)</td>
<td>music (0.022)</td>
</tr>
<tr>
<td>uk (0.042)</td>
<td>team (0.012)</td>
<td>band (0.012)</td>
</tr>
<tr>
<td>unsecured (0.026)</td>
<td>league (0.009)</td>
<td>film (0.011)</td>
</tr>
<tr>
<td>credit (0.024)</td>
<td>win (0.009)</td>
<td>festival (0.009)</td>
</tr>
<tr>
<td>home (0.022)</td>
<td>home (0.009)</td>
<td>dance (0.008)</td>
</tr>
</tbody>
</table>
Tests

- public: Web Spam Challenge 2008 public features
- text: pivoted tf.idf (Singhal et al.)
- graph: site and page level stacked graphical (see Dávid Siklósi’s Challenge talk)

<table>
<thead>
<tr>
<th>feature set</th>
<th>F</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>text (SVM)</td>
<td>0.554</td>
<td>0.864</td>
</tr>
<tr>
<td>public & text & graph (log)</td>
<td>0.601</td>
<td>0.954</td>
</tr>
<tr>
<td>public & text & graph & lda (log)</td>
<td>0.667</td>
<td>0.969</td>
</tr>
</tbody>
</table>