A Large-scale Study of Automated Web Search Traffic

Greg Buehrer¹, Jack Stokes² and Kumar Chellapilla¹

¹Microsoft Live Labs, ²Microsoft Research
Problem Statement

• Goal
 – Distinguish search queries as either automated or by a human

• Motivation
 – Improve QoS for humans
 – Increase/improve data for relevance

• Caveats
 – Currently next-day analysis
 – Requires sessionization
 – Currently on a per-day basis, could analyze over longer time periods
Why automate query traffic?

• To collect information
 – About the search engine
 • SEOs will query to check URL presence, rankings, find low result queries
 – For personal gain
 • Easy stock quotes, business news, etc
 • Scrape for email addresses, phone numbers, good spam queries

• To commit click fraud
 – Click on ads of competitors
Exploring the Query Logs

Top Queries of the Day

1. ""
2. "google"
3. "yahoo"
4. "fire+department+-location%3ajp"
5. "youtube"
11. "microsoft"
Search Traffic Flow

Search Pages
MSN, Live.com, Local Live, etc

Our Applications
Club Live, MSN Shopping, etc

3rd Party Applications

Browsers
IE, Safari, Firefox, etc

Custom Programs
C# Webrequests, browser automation, etc

Search Engine
Query Stream Classification Process

Log Queries -> Sessionize queries into users -> Calculate features for users -> Classify users

Focus of this paper
Feature Set

• Physical limits - time and space bound
 – Volume
 • Number of queries, clicks, etc (sustained)
 – Rate
 • Maximum interactions in a small time frame
 – Space
 • Distinct locations in a given time frame

• Behavioral Signals
 – Entropy/chaos bound
 • Entropy of keywords, lengths, temporal ordering, periodicity, query category
 – Signatures
 • Spam score of keywords, adult score of keywords, etc
 • CTR, dwell time, etc
 • Blacklisted IPs, User agents, locales, etc

Features are simple calculations and require little time for full data
Data Set

• First we sampled 100M requests (all requests for a chosen user are included using cookies)

• Then we pruned it to those that had at least 5 interactions, totally 46M requests
PL: Volume

- Total Requests, Queries, Clicks, Keywords, etc
 - Most discriminating feature class
 - One user queried for “mynet” 12,061 times
PL: Rate

- Number of events per (small) time period
 - Requests, clicks

Max number of requests per 10 second period
PL: Geography

• Distinct IP address, considering only the first two octets
 – One user had 38 different cities in 4 hrs (428 queries)

Example
4:18:34 AM IP1 Charlottesville, Virginia
4:18:47 AM IP2 Tampa, Florida
4:18:52 AM IP3 Los Angeles, California
4:19:13 AM IP4 Johnson City, Tennessee
4:22:15 AM IP5 Delhi, Delhi
4:22:58 AM IP6 Pittsburgh, Pennsylvania
4:23:03 AM IP7 Canton, Georgia
4:23:17 AM IP8 Saint Peter, Minnesota

Number of IP addresses (first two octets)
B: Click-through Rate

- Histogram for light and heavy users

- Histograms show many more zero-click users when the volume is high
 - Rank checking does not require a click
 - Scraping top URLs for a query does not require a click
B: Keyword, Query Entropy

- Calculated as informational entropy where the token is either a keyword or the whole query

Example:
06:20:59 2007: financial+trade+cycle,
06:24:14 2007: blue+letter+bible,
06:25:30 2007: should+know+before,
06:27:40 2007: individuals+cannot+adequately,
06:30:23 2007: representing+several+bareboat+companies,
06:31:52 2007: following+provisions+that,
06:33:22 2007: post+jobs+with+careerbuilder,
06:34:38 2007: edit+keyboard+shortcuts,
06:35:15 2007: ways+consumer+knowledge+test,
06:36:28 2007: like+writing+good+code,
06:39:19 2007: save+money+with+road+runner,
06:41:00 2007: featured+inquiry+logo+when+does,
06:43:03 2007: asylum+lake+controversy,
06:44:40 2007: introduced,
06:45:11 2007: abdominal+wall+pathway,
06:46:51 2007: calendars,
06:47:44 2007: free+press+release+distribution,
06:49:25 2007: early+double+knits+were,
07:03:27 2007: serves+audiobook+professionals,
B: Alphabetical Ordering

- Some users issue their queries in alphabetical order

Example 1
2102manpuku,
2103manpuku,
2104manpuku,
...

Example 2
http astro stanford
http adulthealth lo
http www bigdrugsto
http www cheap diet pills online ...
http www generic vi
http contrib cgi cl
http www e insaat b
http buy tramadol o
http cialis raulserrano info ciaxlis ...
http englishgrad cas ilstu edu files ...
B: Spam & Adult Scores

• A small dictionary of spam (or adult) keywords and weights is used (normalized sum)

Example
Managing your internal communities based group captive convert video from book your mountain resort agreement forms online find your true love products from thousands mtge market share slips mailing list archives student loan bill your dream major computer degrees from home free shipping coupon offers
B: Length Entropy

• Length of each keyword, length of each query

Example

<table>
<thead>
<tr>
<th>pae</th>
<th>nex</th>
</tr>
</thead>
<tbody>
<tr>
<td>cln</td>
<td>intc</td>
</tr>
<tr>
<td>eu3</td>
<td>tei</td>
</tr>
<tr>
<td>eem</td>
<td>wfr</td>
</tr>
<tr>
<td>olv</td>
<td>ssg</td>
</tr>
<tr>
<td>oj</td>
<td>sqi</td>
</tr>
<tr>
<td>lqde</td>
<td>nq</td>
</tr>
<tr>
<td>igf</td>
<td>trf</td>
</tr>
<tr>
<td>ief</td>
<td>cl</td>
</tr>
<tr>
<td>nzd</td>
<td>dax</td>
</tr>
<tr>
<td>rib</td>
<td>ewl</td>
</tr>
<tr>
<td>xil</td>
<td>bbdb</td>
</tr>
<tr>
<td>nex</td>
<td>csco</td>
</tr>
</tbody>
</table>
B: Query Periodicity

- Entropy of elapsed time between successive requests (or clicks, for dwell time)
 - Could also use FFT
B: Advanced Query Terms

- Scan index for "title:“, "link:“, "url:“, etc and keep a count of the total number of occurrences
Others

• Reputations
 – Use bags of values that represent black lists (or white lists) for particular fields
 • IP address
 • User agent
 • User ID (was previously tagged as automated)
 • Country code / locale

• CLR boost
 – % clr gain afforded by user Id, day, etc

• Ranks of the queries
Preliminary Classification Results

- **Weka** – 320 Labeled data points
 - Not chosen randomly (Active Learner)
 - Search page entry points
 - Didn’t include reputations

<table>
<thead>
<tr>
<th>Classifier</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayes Net</td>
<td>183</td>
<td>120</td>
<td>11</td>
<td>6</td>
<td>95</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>185</td>
<td>106</td>
<td>25</td>
<td>4</td>
<td>91</td>
</tr>
<tr>
<td>AdaBoost</td>
<td>179</td>
<td>119</td>
<td>12</td>
<td>10</td>
<td>93</td>
</tr>
<tr>
<td>Bagging</td>
<td>185</td>
<td>115</td>
<td>16</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>ADTree</td>
<td>182</td>
<td>121</td>
<td>10</td>
<td>7</td>
<td>95</td>
</tr>
<tr>
<td>PART</td>
<td>184</td>
<td>120</td>
<td>11</td>
<td>5</td>
<td>95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Query Count</td>
</tr>
<tr>
<td>2</td>
<td>Query Entropy</td>
</tr>
<tr>
<td>3</td>
<td>Max interval</td>
</tr>
<tr>
<td>4</td>
<td>CTR</td>
</tr>
<tr>
<td>5</td>
<td>Spam Score</td>
</tr>
</tbody>
</table>
Mixed Signals

- It is not uncommon to have automated traffic and human traffic on the same user Id
 - 6,534 queries, first five (4 clicks) were
 - Pottery barn
 - Pottery barn kids
 - Pottery barn kids outlet
 - Pottery barn kids outlet store
 - Pier 1 ...
 - Then 6529 queries without a click (mostly blank)
Conclusion

• Feature set to distinguish between human search query traffic and automated query traffic
 – Divided into two groups, physical limits and behavioral signals
 – Initial results suggest the features can be used to classify traffic effectively
Exploring the Query Logs

Future Work

How many IP addresses have no cookies at all?
19.3M

How many of these 19.3M have < 100 queries?
19.1M

Can we sessionize these into users?
Questions?