Query-log mining for detecting spam queries

Carlos Castillo¹, Claudio Corsi², Debora Donato¹, Paolo Feraggina², Aristides Gionis¹

> ¹Yahoo! Research Labs, Barcelona, Spain ²University of Pisa, Italy

- Query logs provide valuable information for queries and for documents
 - implicit tags
 - wisdom of crowds
- Human-constructed directories provide high quality classification labels for (a subset) of douments
- \Rightarrow Identify spam by combining information contained in query logs and in web directories and usage mining

- *Query graphs:* bipartite graphs between queries and documents
- Extract features from query graphs
- "Semantic" features obtained by propagating web-directory topic labels on the query graph
- Use obtained features to improve accuracy of spam detection
- Characterize also queries as spam-attracting

Example query log entry:

q₁: "shoes" => d₁: shoes1.com, d₂: shoes2.com [clicked], d₃: shoes3.com

- degree of a node (query or document)
- for document d: topQ_x(d) the set of queries adjacent to d and being among the fraction x of the most frequent queries in the query log
- for document d: topT_y(d) the set of query terms which compose the queries adjacent to d in G and being among the fraction y of the most frequent terms in the query log

- intuition: multi-topic attractor has potential of being spam
- topic labels can be obtain from a web directory
- ...but not for all documents

- intuition: multi-topic attractor has potential of being spam
- topic labels can be obtain from a web directory
- ...but not for all documents

propagation

Read result at each node as a distribution, and compute its entropy

• propagation by weighted average

$$ext{score}_{v}^{i+1}(c) \hspace{0.1 cm} + = \hspace{0.1 cm} lpha^{i-1} \sum_{(v',v) \in E} ext{score}_{v'}^{i}(c) imes f(v',v)$$

and normalization

- propagation by random walk
 - inspired by topic-sensitive PageRank
- "Semantic features": *entropy* of the distribution of topic scores (documents and queries)

- query-log: sample of 1.6m queries from Yahoo! query log
- web dirctory: DMOZ, 4.2m documents
- labeled spam colection: the WEBSPAM-UK2006 dataset

	Document-level			Host-level		
	C _d	A_d	V_d	C _h	A_h	V_h
Queries	1.59M	0.75M	2.78M	1.59M	0.75M	2.78M
Docs/hosts	2.75M	1.31M	23.47M	0.83M	0.40M	3.08M
Edges	3.69M	1.67M	40.71M	3.50M	1.53M	3.45M
$\mathcal{C}_D(0)$	0.05	0.08	0.03	0.28	0.35	0.15
$\mathcal{C}_Q(1)$	0.18	0.24	0.39	0.58	0.75	0.92
$C_D(2)$	0.22	0.22	0.45	0.70	0.75	0.94
$\mathrm{CC}_{\mathrm{max}}$	0.32	0.19	0.92	0.80	0.83	0.98
$ \mathrm{CC} $	0.21	0.23	0.007	0.08	0.06	0.006

Feature set	Features	ΤP	FP	F_1	AUC
Content (C)	98	75.8%	9.8%	0.692	0.912
Links (L)	139	84.2%	9.5%	0.739	0.939
Usage (U)	61	54.2%	7.4%	0.557	0.872
$C \cup L$	237	83.9%	8.6%	0.756	0.952
$\mathtt{C}\cup\mathtt{U}$	159	68.4%	6.6%	0.693	0.917
$\mathtt{L} \cup \mathtt{U}$	200	78.5%	6.5%	0.757	0.951
$C \cup L \cup U$	298	78.9%	6.2%	0.765	0.951

- define "spamicity of a query": fraction of spam results shown to the user
- Task 1: predict if query spamicity is "< 0.5" or " \geq 0.5" AUC: 0.798, true positive rate: 73.7%, false positives: 29.0%
- Task 1: predict if query spamicity is "= 0.5" or " \geq 0.5" AUC: 0.838, true positive rate: 74.0%, false positives: 22.1%

- Use query-log mining and DMOZ class labels for spam detection
- Detect spam that has already "fooled" the search engine
- Propagation method can be useful in other tasks, too
- Future: extract better features and improve the results

- Use query-log mining and DMOZ class labels for spam detection
- Detect spam that has already "fooled" the search engine
- Propagation method can be useful in other tasks, too
- Future: extract better features and improve the results

Thank you!