Query-log mining for detecting spam queries

Carlos Castillo1, Claudio Corsi2, Debora Donato1, Paolo Feraggina2, Aristides Gionis1

1Yahoo! Research Labs, Barcelona, Spain
2University of Pisa, Italy
Query logs provide valuable information for queries and for documents
 - implicit tags
 - wisdom of crowds

Human-constructed directories provide high quality classification labels for (a subset) of documents

⇒ Identify spam by combining information contained in query logs and in web directories and usage mining
Query graphs: bipartite graphs between queries and documents

Extract features from query graphs

“Semantic” features obtained by propagating web-directory topic labels on the query graph

Use obtained features to improve accuracy of spam detection

Characterize also queries as spam-attracting
Example query log entry:
q_1: “shoes” => d_1: shoes1.com, d_2: shoes2.com [clicked], d_3: shoes3.com

Click-Graph

View-Graph

Anticlick-Graph
syntactic features

- degree of a node (query or document)
- for document d: $\text{topQ}_x(d)$ the set of queries adjacent to d and being among the fraction x of the most frequent queries in the query log
- for document d: $\text{topT}_y(d)$ the set of query terms which compose the queries adjacent to d in G and being among the fraction y of the most frequent terms in the query log
intuition: multi-topic attractor has potential of being spam

- topic labels can be obtain from a web directory
- ...but not for all documents
intuition: multi-topic attractor has potential of being spam
- topic labels can be obtain from a web directory
- ...but not for all documents
propagation

Read result at each node as a distribution, and compute its entropy
propagation by weighted average

\[\text{score}_{v+1}^{i}(c) = \alpha^{i-1} \sum_{(v',v) \in E} \text{score}_{v'}^{i}(c) \times f(v', v) \]

and normalization

- propagation by random walk
 - inspired by topic-sensitive PageRank

- “Semantic features”: entropy of the distribution of topic scores (documents and queries)
query-log: sample of 1.6m queries from Yahoo! query log
web directory: DMOZ, 4.2m documents
labeled spam collection: the WEBSPAM-UK2006 dataset
statistics on the query graphs

<table>
<thead>
<tr>
<th></th>
<th>Document-level</th>
<th></th>
<th>Host-level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_d</td>
<td>A_d</td>
<td>V_d</td>
<td>C_h</td>
</tr>
<tr>
<td>Queries</td>
<td>1.59M</td>
<td>0.75M</td>
<td>2.78M</td>
<td>1.59M</td>
</tr>
<tr>
<td>Docs/hosts</td>
<td>2.75M</td>
<td>1.31M</td>
<td>23.47M</td>
<td>0.83M</td>
</tr>
<tr>
<td>Edges</td>
<td>3.69M</td>
<td>1.67M</td>
<td>40.71M</td>
<td>3.50M</td>
</tr>
<tr>
<td>$C_D(0)$</td>
<td>0.05</td>
<td>0.08</td>
<td>0.03</td>
<td>0.28</td>
</tr>
<tr>
<td>$C_Q(1)$</td>
<td>0.18</td>
<td>0.24</td>
<td>0.39</td>
<td>0.58</td>
</tr>
<tr>
<td>$C_D(2)$</td>
<td>0.22</td>
<td>0.22</td>
<td>0.45</td>
<td>0.70</td>
</tr>
<tr>
<td>CC_{max}</td>
<td>0.32</td>
<td>0.19</td>
<td>0.92</td>
<td>0.80</td>
</tr>
<tr>
<td>$</td>
<td>CC</td>
<td>$</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>Feature set</td>
<td>Features</td>
<td>TP</td>
<td>FP</td>
<td>F₁</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Content (C)</td>
<td>98</td>
<td>75.8%</td>
<td>9.8%</td>
<td>0.692</td>
</tr>
<tr>
<td>Links (L)</td>
<td>139</td>
<td>84.2%</td>
<td>9.5%</td>
<td>0.739</td>
</tr>
<tr>
<td>Usage (U)</td>
<td>61</td>
<td>54.2%</td>
<td>7.4%</td>
<td>0.557</td>
</tr>
<tr>
<td>C ∪ L</td>
<td>237</td>
<td>83.9%</td>
<td>8.6%</td>
<td>0.756</td>
</tr>
<tr>
<td>C ∪ U</td>
<td>159</td>
<td>68.4%</td>
<td>6.6%</td>
<td>0.693</td>
</tr>
<tr>
<td>L ∪ U</td>
<td>200</td>
<td>78.5%</td>
<td>6.5%</td>
<td>0.757</td>
</tr>
<tr>
<td>C ∪ L ∪ U</td>
<td>298</td>
<td>78.9%</td>
<td>6.2%</td>
<td>0.765</td>
</tr>
</tbody>
</table>
define “spamicity of a query”: fraction of spam results shown to the user

Task 1: predict if query spamicity is “< 0.5” or “≥ 0.5”
AUC: 0.798, true positive rate: 73.7%, false positives: 29.0%

Task 1: predict if query spamicity is “= 0.5” or “≥ 0.5”
AUC: 0.838, true positive rate: 74.0%, false positives: 22.1%
Use query-log mining and DMOZ class labels for spam detection
Detect spam that has already “fooled” the search engine
Propagation method can be useful in other tasks, too
Future: extract better features and improve the results
Use query-log mining and DMOZ class labels for spam detection
Detect spam that has already “fooled” the search engine
Propagation method can be useful in other tasks, too
Future: extract better features and improve the results
Thank you!