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Introduction Introduction –– simple mathsimple math

• How many spam pages are there on the Web?
– Over 10% (Fetterly et al. 2004, Gyöngyi et al. 2004)
– Web has 152 billion pages (How Much Info project 2003)

• How many can a search engine index?
– Tens of billions (Google: 8 billion@2004, Yahoo: 20 billion@2005)

• #(spam) is equal to/more than search engines’ index sizes
• Search index will be filled with useless pages without spam 

detection.
• We have developed lots of spam detection methods

However However ……



Result #1: a cloaking spam

IntroductionIntroduction

• Search “N95 battery time” with a certain Chinese 
search engine on 08/04/17

Result #3: the page cannot 
be connected (cache shows 

a content spam)
Result #4: search result from 
another engine with ads (also 

a content spam)



IntroductionIntroduction

• Problem: spam detection has been an ever-lasting process
– Good news for anti-spam engineers!
– Bad news for Web users / search engines

• Are detection methods not effective?
– No! Lots of works report over 90% detection accuracy (Ntoulas et 

al. 2006, Saito et al. 2007, Lin et al. 2007, …)

• Are detection methods not timely?
– Yes! When one kind of spam appears, it takes a long time for 

anti-spam engineers to realize the appearance.



IntroductionIntroduction

• How does spam make a profit?
For a certain kind of Web spam technique

Time

UV / Profit

T1

T2



IntroductionIntroduction

Detect a new kind of Web spam 
technique timely

Reduce the spam profit

When profit < cost, spam stops

• Important: find new kind of spam as soon as possible



UserUser--behavior Featuresbehavior Features

• Users will at first realize the existence of a new 
spam page
– How to use the wisdom of crowds to detect spam?

• Social annotation? (possible noises)
• Web access log analysis.

– Web access logs
• Collected by a commercial search engine
• July 1st, 2007 to August 26th, 2007 
• 2.74 billion user clicks 

in 800 million Web pages 



UserUser--behavior Featuresbehavior Features

• The behavior features we propose
– How many user visits are oriented from search engine?
– How many users will follow links on the page?
– How many users will not visit the site in the future?
– How many user visits are oriented by hot keyword 

searches?
– How many pages does a certain user visit in the site?
– How many users visit the site?
– …



UserUser--behavior Featuresbehavior Features

• Search engine oriented visiting rate (SEOV rate)
– Web spam are designed to get “an unjustifiably 

favorable relevance or importance score” from search 
engines. (Gyongyi et. al. 2005)

– Assumption: 
Most user visits to Web spam are from search engine 

result lists
– Definition:
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pofVisits
pofvisitsorientedengineSearchpSEOV =



UserUser--behavior Featuresbehavior Features

• SEOV rate distribution
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Most ordinary pages’ user visits are not from search engines

Some spam don’t receive many UV from search 
engines, either.



UserUser--behavior Featuresbehavior Features

• Source page rate (SP rate)
– Spam pages are usually designed to show users 

ads/low-quality information at their first look.
– Users don’t trust hyperlinks on spam pages  
– Assumption:

Most Web users will not follow hyperlinks on spam 
pages

– Definition:
)(#
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UserUser--behavior Featuresbehavior Features

• SP rate distribution

Half of spam pages have very small SP values

User clicks hyperlink on some spam page, too. (users may 
be cheated by anchor texts)



UserUser--behavior Featuresbehavior Features

• Short-time Navigation Rate (SN rate)
– Users cannot be cheated again and again during a small 

time period
– Assumption:

Most Web users will not visit a spam site many times 
in a same user session

– Definition:

)(#
)(#

)(
svisituserswhichinSessions

sinpagesNthanlessvisituserswhichinSessions
sSN =

N: parameter
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UserUser--behavior Featuresbehavior Features

• SN rate distribution (N = 3)

Few spam pages are visited over 2 times in a session

A number of ordinary pages also receive few UVs in a 
session. (redirection sites, low-quality sites, …)



UserUser--behavior Featuresbehavior Features

• Correlation values between these features
– Different assumption
– Different information sources
– Relatively low correlation
– Possible to use Bayes learning methods

SEOV SP SN
SEOV 1.0000 0.1981 0.1780

SP 0.1981 1.0000 0.0460
SN 0.1780 0.0460 1.0000



Detection algorithmDetection algorithm

• Problem:
– Uniform sampling of negative examples (pages which 

are not spam) is difficult

• Solution:
– Learning from positive examples (Web spam) and 

unlabelled data (Web corpus)
– Calculate the possibility of a page p being Web spam 

using user behavior features



Detection algorithmDetection algorithm

• For a single feature A:

• For three features SEOV, SP and SN:
– Features are approximately independent as well as 

conditionally independent given the target value 
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Detection algorithmDetection algorithm

• Algorithm Description



Experimental ResultsExperimental Results

• Experiment setup
– Training set:

• 802 spam sites 
• Collected from the hottest search queries’ result lists

– Test set:
• 1564 Web sites annotated with whether it is spam or not
• 345 spam, 1060 non-spam, 159 cannot tell
• Percentage of spam is higher than the estimation given by 

Fetterly et. al. and Gyöngyi et. al. . (we only retain the sites 
which are visited at least 10 times)



Experimental ResultsExperimental Results

• How to evaluate the performance
– Focus: find the recently-appeared spam types (not to 

detect all possible spam types)
1: Whether the spam candidates identified by this 

algorithm are really Web spam. (effectiveness)
2: Whether this algorithm detect spam types more timely 

than current search engines. (timeliness)
3: Which feature is more effective?



Experimental ResultsExperimental Results

• Detection performance (effectiveness)
– Whether the top-ranked candidates are Web spam
– 300 Pages with the highest P(Spam) values

• Only 6% are not Web spam (low-quality page, SEO page)
• Many spam types can be identified. (wisdom of crowds)

Page Type Percentage
Non-spam pages 6.00%

Web spam pages (Content spamming) 21.67%
Web spam pages (Link spamming) 23.33%
Web spam pages (Other spamming) 10.67%

Pages that cannot be accessed 38.33%



Experimental ResultsExperimental Results

• Detection performance (timeliness)
– Experiments with one of the most frequently-used 

Chinese search engines (use X to represent it)
– Recent data: Access logs from 08/02/04 to 08/03/02
– Top-ranked spam candidate sites

• 723/1000 are spam sites (some failed to be connected)
• X indexed 34 million pages from these 723 sites in early Mar.
• 59 million pages were indexed by X at the end of Mar.

These spam are not detected by X, X spent 
lots of resources on these useless pages



Experimental ResultsExperimental Results

• Detection performance (algorithm & features)

AUC value of the 
detection algorithm is 
about 80%



Experimental ResultsExperimental Results

• Detection performance (algorithm & features)

Learning algorithm gains 
better performance than 
any single feature



Experimental ResultsExperimental Results

• Detection performance (algorithm & features)

SN performs the worst:
Examples: Q&A portal, 
Audio/Video sharing sites.



ConclusionsConclusions

• The amount of Web spam is perhaps over search 
engine index size

• Timeliness is as important as effectiveness in spam 
detection

• User behavior features can be used to find recently-
appeared spam types timely and effectively
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