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The Data Used

� Web graph

� Host graph (114K hosts)

� The full Web graph (105M URLs) wasn’t used

� Sample pages – up to 400 (first crawled) 

pages per host, in WARC format (12M)

� Spam judgments – for ~3.75% of hosts

� Features provided by organizers
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The Host Graph

� 114529 hosts

� 453 hosts labeled as spam (by 2006 and 2007 judgments)

� 4995 hosts labeled as normal

� Weight of an edge is the number of inter-host links
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Pre-computed Feature Vectors

� Two obvious direct features:
� Number of pages in host

� Host name length (in bytes)

� Features, proposed in the articles:
� L. Becchetti, C. Castillo, D. Donato, S. Leonardi, R. Baeza-Yates:

� "Using Rank Propagation and Probabilistic Counting for Link-Based Spam Detection"

� C. Castillo, D. Donato, A. Gionis, V. Murdock, F. Silvestri:
� "Know your Neighbors: Web Spam Detection using the Web Topology"

� Link-based features (the list on the next slide)
� For the front page and the page with the maximal PageRank

� Content-based features (the list on the second slide)
� For the front page and the page with the maximal PageRank – plus 

averages and standard deviations over all host pages
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Link-based Features

� Assortativity coefficient (degree / average degree of neighbors)
� “degree” here is undirected (in-degree+out-degree)

� Average in-degree of out-neighbor pages
� Average out-degree of in-neighbor pages

� Number of in-neighbor pages at distances 1 to 4 (4 features)
� Out-degree

� PageRank
� in the doc graph with no self-loops, with a damping factor of 0.85, with 50 

iterations

� Standard deviation of the PageRank of in-neighbors
� Fraction of out-links that are also in-links

� a page with no out-links has a value of 0

� Number (approx.) of in-neighbor hosts at distances 1 to 4 (4 features)
� TruncatedPageRank using truncation distances 1 to 4 (4 features)

� TrustRank (obtained using 3,800 hosts from ODP as trusted set)
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Content-based Features

� Number of words in the page

� Number of words in the title

� Average word length

� Fraction of anchor text

� Fraction of visible text

� Compression rate of the page

� Top 100, 200, 500, 1000 corpus terms precision (4 features)

� Top 100, 200, 500, 1000 corpus terms recall (4 features)

� Top 100, 200, 500, 1000 query terms precision (4 features)

� Top 100, 200, 500, 1000 query terms recall (4 features)

� Entropy of trigrams

� Independent trigram likelihood
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The Challenge Submission Overview

� A boosted vote of few large margin classifiers

� There were 13 partial classifiers combined

� Voters built by separate groups of features

� Two overall classifiers were built

� using different training procedures and data
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Groups of Features Used

� Host graph analysis (scores extension)

� Distribution of host pages compression rate

� Content features (word frequencies)

� Features readily provided by organizers
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Host Graph Analysis

� The features were an elaboration of those in:

� T. Abou-Assaleh, T. Das, 2007

� Extention and Propagation of manual Spam scores

� They were extensively reworked due to

� 10-fold increase of this year’s host graph size

� Relatively low amount of spam scores available
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Compression Rate Features

� GZIP compression rates for every page of a host:

� Were put into bins: [0, 0.5), [0.5, 1), [1, 1.5) ... [9.5, 10), [10, +)

� Makes 63 features – three per each of 21 bins:

� The bin’s page count, average compression rate and standard deviation

� Normalization of the features:

� for the mean=0, std=1 on our training set
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� SVMLight with linear kernel was used
� The features were normalized (mean = 0, std=1)

� Classification results:
� F1 = 27.99% (R = 35.38%, P = 23.15%)

� Just 8.63% of non-labeled hosts classified as spam with these settings

Compression Rate Results

Normal Spam

Predicted Normal 3495 137

Predicted Spam 249 75
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Word Frequency Features

� Words* in <title>, <meta> (keywords, description), <anchor> and <body>
� Computed the average of log(1+ wc)/log(1+pl)

� where wc – word count, and pl – page length

� Separately for each word and each tag

� Also used query log frequencies in word counting for pages

� Feature selection
� Should be present with at least 10% of either spam or normal hosts

� A threshold of 75% discriminating power between classes by Student test

� SVMLight with linear kernel used for classification

• * a ‘word’ is any sequence of letters, numbers and some special symbols
• lowercased
• Numbers excluded
• Examples: seed, foo, 123f, $100, бабай



13

Classification by Word Frequencies

� Max F1 = 22.35% (R = 39.07%, P = 15.65%)
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Classification by Pre-computed Features

� Total of 276 features provided

� The training data were made by extending host labels from ones given
� Total of 9700 hosts

� Three different ways of data normalization were used:

� 1) normalizing features to (mean=0, std=1)

� 2) normalizing data vectors to |x|=1

� 3) the combination of 1) followed by 2)

� One classifier set has been built using Gaussian kernel SVMLight
� The weight –j was set to 1/40

� That was the ratio of spam to normal within the training set

� The training set was divided into three equal parts
� The first one used for SVM training, the other one for kernel gamma parameter 

tuning, the third one for cross-evaluation

� The best achieved F1 (for normalization 3) was 0.39 (R=0.6, P=0.29)
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Classification by Pre-computed Features

� The other classifier used weighted Linear kernel SVMLight

� with feature selection

� with weight of normal class = 0.2

� Feature selection
� The features correlated at level >0.95 were considered connected

� Then 276 features yielded 188 connected components

� Of each connected component a single feature has been taken as a representative

� The one most correlated with spam judgments is taken

� That set of 188 features achieved F1=22.4 (R=0.23, P=0.22)
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Results with Pre-computed Features

� Max F1 = 24.66% (R = 28.46%, P = 21.75%)
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Host Graph Structure (an Illustration)

Labeled graph nodes (connected by >100 links) are distributed on plane using “spring” model
and the spam ends up together

("Know your Neighbors: Web Spam Detection using the Web Topology")
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Host Graph Data

� The original training set:
� Spam – 229 nodes

� Normal – 3714 nodes

� The set, extended by last year’s judgments:
� Spam – 453 nodes

� Normal – 13504 nodes



19

Scores Extension

� Additional scores taken

� At least two judges gave the same score

� Or, hosts that were in “trusted” domain:

ac.uk, sch.uk, gov.uk, nhs.uk, police.co.uk
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Normal Nodes Labeling

� The nodes classified a priori as normal:

• Those judged as normal

• Those linked by normal… – the idea was:

• Spam refers to spam frequently, normal hosts don’t
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Spam Labeling (1)

� The nodes classified a priori as spam:

• Those judged as spam

• Those linking spam… – the idea was:

• Spam refers to spam frequently, normal hosts don’t
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Spam Labeling (2)

� Two features computed for each node:
� Overlap:

� The ratio of bidirectional links to sum of in- and out-links
� The idea is of link farms detection

� Variance:
� Standard deviation in number of out-links with in-neighbors

� The idea: if it’s small, the graph might be automatically generated

� Thresholds for Overlap и Variance were 

learned

� The node is classified as spam by either one
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Scores Initialization

Node x is assigned a pair ( Bad Score(x) , Good Score(x) ):

� 1) If a node was marked normal, Good Score(x) = 1

� 2) If a node was marked spam, Bad Score(x) = -1

Make iterations on scores – and consider the pair:

� ( Old Bad Score(x), Old good score(x) )

� the values on previous interation
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Scores Propagation
Then next iteration scores are computed as:

α is a free parameter here

- we set it to 0.2

|neighborsout |

Score(y) Good Old

  Score(x) GoodOldScore(x) Good

 
|neighborsin |

Score(y) Bad Old

  Score(x) BadOldScore(x) Bad

neighborout  -y i

neighborin  -y 

∑

∑

+=

+=

α

α i
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The Final Node Classification

After fixed number of iterations we get final values of
Bad Score и Good Score, and use it for classification:

The value of parameter β is set to = 0.95

normal  0  Score Good ) - (1  Score Bad 

spam  0  Score Good ) - (1  Score Bad 

⇒>×+×

⇒<×+×

ββ

ββ
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Algorithm Parameters were Chosen

� Overlap

� 0.5

� Threshold on link weight for spam labeling

� 5000

� Threshold on variance

� 0.05

� α = 0.2

� β = 0.95
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Choosing the Parameters

Two approaches were used:

1. The gradient optimization

2. The mesh search

Starting point:

1. Overlap = 0.1, step= 0.1

2. Link weight threshold = 4000, step = 1000

3. Variance threshold = 0.01, step = 0.01

4. α = 0.1, step = 0.1

5. β = 0.9, step = 0.01
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The target functions in parameter choice

� Specificity =

� Spam correctly classified / Total spam

� Sensitivity =

� Normal correctly classified / Total normal

� The threshold on specificity was set

� It was set to 0.4

� Values in (0.4 – 0.6) were originally tried

� The sensitivity was maximized
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Results for Host Graph 2006
� Results with no cross-validation (on a training set)

� F1 = 89.93% (R = 100%, P = 81.7%)

� Results with cross-validation (2-fold)

� F1 = 52.8% (R = 50.08%, P = 55.83 %)

Normal Spam

Predicted Normal 4797 0

Predicted Spam 151 674

Normal Spam

Predicted Normal 4628 334

Predicted Spam 265 335
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Results for Host Graph 2007
� Results with no cross-validation (on a training set)

� F1 = 99.67% (R = 100%, P = 99.34%)

� Results with cross-validation (2-fold)

� F1 = 21.47% (R = 30.82%, P = 16.47%)

Normal Spam

Predicted Normal 13501 0

Predicted Spam 3 453

Normal Spam

Predicted Normal 12559 312

Predicted Spam 705 139
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Results for Host Graph 2007 (no cross-validation)

� Max F1 = 99.67% (R = 100%, P = 99.34%)
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Results for Host Graph 2007 (cross-validation)

� Max F1 = 21.47% (R = 30.82%, P = 16.47%)
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The Final Classifier Training

� The classifier was created by combining weak learners

� Weak learners obtained by separate groups of features

� Combination was done with the TreeNet software
� In classification mode, with unit weights

� The partial classifiers were created using:

� SVM with Linear and Gaussian kernels, Naïve Bayes

� four SVM and three Naïve Bayes classifiers were built on word frequencies

� There also was a direct graph-based rule

� Discriminant functions were weak learners for TreeNet model

� The F1 measure of stand-alone classifiers did not exceed 39%

� The combined F1 for spam detection estimated as 67.5% (at R=68.3%, P=66.7%)
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The Second Final Classifier Training

� With the first submission

� the TreeNet classifier trained on overall spam judgments

� Obtained with judgments by all judges taken together

� With the second submission

� 34 separate classifiers were built for judgments of each judge

� Judges that made more than 100 judgments (we took 34 of them)

� For four judgment types (borderline, nonspam, spam, unknown)

� The probabilities of each class were computed for each judge

� Weighted sum of 34 probabilities for each of first three classes taken

� The weights equal to (1-prob(“unknown”))

� Then the final spam probability was calculated as

� (s + 0.5*b)/(s + n + b)

� Where s, n, b were weighted sums of computed probabilities from all judges

� For the classes of “spam”, “nonspam” and “borderline”, respectively
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“Borderline” as 0.5 Spam (training)

� First Version: Max F1 = 58.9% (R = 49.2%, P = 73.3%)

� 2nd Version: Max F1 = 76.3% (R = 96.3%, P = 63.3%)
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“Borderline” as 0.75 Spam (training)

� First Version: Max F1 = 53.5% (R = 45%, P = 65.9%)

� 2nd Version: Max F1 = 83.8% (R = 95.3%, P = 74.8%)
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“Borderline” Judgments Ignored (training)

� First Version: Max F1 = 76% (R = 77.9%, P = 74.2%)

� 2nd Version: Max F1 = 87.2% (R = 98.2%, P = 78.4%)
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