Web Spam Hunting

Dávid Siklósi
sdavid@ilab.sztaki.hu

joint work with
András A. Benczúr István Bíró Zsolt Fekete
Miklós Kurucz Attila Pereszlényi Simon Rácz
Adrienn Szabó Jácint Szabó
{benczur, ibiro, zsfekete, mkurucz, peresz, sracz, aszabo, jacint}@ilab.sztaki.hu

Data Mining and Web Search Group
Computer and Automation Research Institute
Hungarian Academy of Sciences
Content classification

- Bagging cost sensitive SVM (linear kernel $\gamma = 1$) over tf.idf

- Content Classification by Latent Dirichlet Allocation (AIRWeb 2008)
 - Blei, Ng, Jordan, 2003 (LDA)
 - topic model: distribution over words
 - document model: distribution over topics
 - spamicity measured as similarity to spam vs. honest topic models

- Dynamic Markov Compression
 - Ratio of compression rates when added to spam vs. normal
Stacked Graphical Learning: Overview

- Predict spamicity $p(v)$ of node v
- For target node u, aggregate $p(v)$ for neighbors to form new feature $f(u)$
- Rerun classification by adding feature $f(.)$
- Iterate
Stacked Graphical Learning: features

- Choice of neighbors (node similarities), direction, aggregation (Spam Challenge 2007 part II)
 - Similarity: edge weight, neighborhood (Jaccard, cosine, Adamic/Adar, ...), path ensemble (PageRank, SimRank, Katz, ...)

- Site Structure Analysis and Stacking
 - Apply the “Connectivity Sonar” features of Amitay et al. (Hypertext 2003)
 - Average, most populated level
 - In and outlinks distributed across pages and levels
 - Leaf and root level linkage
 - Extend in a graph stacking framework: weight by predicted spamicity
 - Honest directories may contain some spam at bottom
 - Virtual hosting may contain spam below the root
Additional features

- Commercial Intent Features (AIRWeb 2007)
 - Microsoft OCI (commercial intention) scores
 - publicly available at http://adlab.msn.com/OCI
 - Penalties for high rank:
 - own search engine (Okapi-based)
 - competitive queries measured by Google AdWords

- New features
 - Number of document formats (doc, pdf etc)
 - existence and value of robots.txt and robots meta
 - existence and average of server last modified dates
 - distance and personalized PageRank from DMOZ top categories
Combination and Results

- Random forest over classifiers
 (outperforms logistic regression proposed last year by Gordon Cormack)
 1–3 SVM, LDA, Compression
 4–6 C4.5’s over public link, public content and additional features
- Compute graphical features, add C4.5 classification above
<table>
<thead>
<tr>
<th>Method</th>
<th>F-measure</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>link</td>
<td>0.198</td>
<td>0.689</td>
</tr>
<tr>
<td>sonar</td>
<td>0.204</td>
<td>0.684</td>
</tr>
<tr>
<td>additional</td>
<td>0.305</td>
<td>0.71</td>
</tr>
<tr>
<td>content</td>
<td>0.349</td>
<td>0.73</td>
</tr>
<tr>
<td>LDA</td>
<td>0.448</td>
<td>0.77</td>
</tr>
<tr>
<td>SVM</td>
<td>0.496</td>
<td>0.926</td>
</tr>
<tr>
<td>DMC</td>
<td>0.667</td>
<td>0.95</td>
</tr>
<tr>
<td>Combined</td>
<td>0.744</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Future challenges?

- The LiWA: Living Web Archives EU FP7 Project
 - User partners: European Internet Archive, Sound and Vision (NL), . . .
 - Research partners: L3S Hannover, MPI Saarbrucken
 - We lead spam filtering efforts
- We plan to provide time history crawl for spam filtering experiments
 - Recrawl by archive crawler – reuse existing assessment labels
 - Needs careful definition as an Archive .uk crawl is huge with 2M sites
- New areas
 - Active learning to optimize manual assessment efforts
 - Spam time evolution analysis in archives
 - New forms of Spam: social media, multimedia, . . .