A Few Bad Votes Too Many?
Towards Robust Ranking in Social Media

Jiang Bian
College of Computing

Georgia Institute of Technology

jbian@cc.gatech.edu

Eugene Agichtein
Math & Computer Science
Emory University

eugene@mathcs.emory.edu

ABSTRACT

Online social media draws heavily on active reader partici-
pation, such as voting or rating of news stories, articles, or
responses to a question. This user feedback is invaluable for
ranking, filtering, and retrieving high quality content - tasks
that are crucial with the explosive amount of social content
on the web. Unfortunately, as social media moves into the
mainstream and gains in popularity, the quality of the user
feedback degrades. Some of this is due to noise, but, increas-
ingly, a small fraction of malicious users are trying to “game
the system” by selectively promoting or demoting content for
profit, or fun. Hence, an effective ranking of social media
content must be robust to noise in the user interactions, and
in particular to vote spam. We describe a machine learning-
based ranking framework for social media that integrates user
interactions and content relevance, and demonstrate its effec-
tiveness for answer retrieval in a popular community question
answering portal. We consider several vote spam attacks, and
introduce a method of training our ranker to increase its ro-
bustness to some common forms of vote spam attacks. The
results of our large-scale experimental evaluation show that
our ranker is significantly more robust to vote spam com-
pared to a state-of-the-art baseline as well as the ranker not
explicitly trained to handle malicious interactions.

Categories and Subject Descriptors
H.3.3 [Information Search Retrieval]: Relevance feed-

back, Search process; H.3.5 [On-line Information Services]:

Web-based services

General Terms
Algorithms Measurement Experimentation

Keywords

Social Media, Ranking, Robustness, Vote Spam, Community
Question Answering

1. INTRODUCTION

Social media sources provide an effective alternative to tra-
ditional web search by directly connecting users with the in-
formation needs to users willing to share the information. For
example, users can post questions or news items, and rely on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AIRWeb °08, April 22, 2008 Beijing, China.

Copyright 2008 ACM 978-1-60558-159-0 ...$5.00.

Yandong Liu

Math & Computer Science
Emory University

yliu49@emory.edu

Hongyuan Zha
College of Computing

Georgia Institute of Technology

zha@cc.gatech.edu

other users to comment or rank the content (e.g., sites such
as Slashdot or Digg). While the responses could be excellent,
the quality could vary greatly. Hence, user feedback, such as
voting, or rating the content, has become a crucial aspect of
the effectiveness of the community. For example, in commu-
nity question answering (e.g. Yahoo! Answers '), users can
give thumbs up or down votes to existing answers; while in
social news and videos sharing services such as Digg 2 and
Youtube, votes are used to judge the quality of the posted
news or videos, as well for the quality of the comments.

A very successful case of a community organized around
information needs (questions) and answers is Yahoo! An-
swers. In this community question answering portal (hence-
forth CQA) users can express specific information needs by
posting questions in order to obtain answers authored by other
web users. In addition, existing answers can be voted on by
any user who wants to share her evaluation of the answers.
All the questions and the answers are stored for future use and
are eventually incorporated into web search results. Unfortu-
nately, the quality of the content in this kind of QA portals
varies drastically, and a large portion of the content is not use-
ful for answering user queries [2]. Not surprisingly, user votes
can provide crucial indicators into the quality and reliability
of the content. For example, in Yahoo! Answers, more than
half of the so called “best answers” to a question are chosen
as the most popular answers according to the user votes. Our
recent work [3] showed that incorporating user vote informa-
tion can significantly improve the quality of a ranker over the
CQA archives.

Unfortunately, not all user votes are reliable. Many “thumbs

up” or “thumbs down” votes are generated without much thought,

and, in some cases, by users intending to game the system —
i.e., to promote specific answers or questions for fun or profit.
We refer those bad or fraudulent votes as wote spam. We
posit that vote spam is an increasingly common phenomenon
in social media sites, and deserves explicit handling for robust
ranking of social media content. In the specific case of Ya-
hoo! Answers, the support team already semi-automatically
removes some of the more obvious vote spam after the fact.
We believe that this solution may not prove adequate in the
long run: as the amount and the patterns of vote spam evolve,
post-factum filtering could significantly degrade user experi-
ence until the product team had a chance to react to a new
spam attack. To complicate this problem, vote spam methods
can change significantly due to varying popularity of content,
specifics of media and topic and as spammers adjust their
methods. Therefore, we need a robust method to train a
ranking function that remains resilient to evolving vote spam
attacks.

In this paper we consider how to modify a recently pre-
sented algorithm for ranking social media [3] to make it more
resilient to some common forms of vote spam. In order to

"http://answers.yahoo.com/
*http://digg.org/

investigate the robustness of our method, we consider several
common vote spam methods in social media. In particular,
we focus on the specific case of CQA to explore the influence
of vote spam on the quality of answer retrieval. Our specific
contributions include:

e A parameterized vote spam model to describe and ana-
lyze some common forms of vote spam (Section 4)

e A method for increasing the robustness of ranking by
injecting noise at training. (Sections 5).

e A comprehensive evaluation on ranking performance for
community question answering, under a variety of sim-
ulated vote spam attacks, demonstrating robustness of
our ranking (Section 6).

2. RELATED WORK

Social media services provide popular web applications such
as photo sharing(Flickr), social bookmarking(Delicious), video
sharing(Youtube), and, more recently, popular community
Question Answering sites such as Yahoo! Answers. Ques-
tion answering over community QA archives is different from
traditional TREC QA [19], and applying QA techniques over
the web [4]. The most significant difference is that traditional
QA operates over a large collection of documents (and/or web
pages) whereas we are attempting to retrieve answers from a
social media archive with a large amount of associated user-
generated metadata [2]. This metadata (such as explicit user
feedback on answer quality) is crucial due to the large dispar-
ity of the answer quality, as any user is free to contribute his
or her answer for any question.

Due to the explosive rise in popularity of Yahoo! Answers
and other sites, community QA has recently become an active
area of research. Jeon et al. [8] presented retrieval methods
based on machine translation models to find similar questions
from a community QA service, but did not take the quality
of answers into consideration. Su et al. [18] analyzed the
quality of answers in QA portals and found that the quality of
each answers varies significantly. Jeon et al. [9] built a model
for the quality of answers based on features derived from the
specific answer being analyzed. Recently, Agichtein et al. [2]
explored user interaction and content-based lexical features
to identify high-quality content, and Bian et al. [3] presented
a ranking framework to utilize user interaction information
to retrieve high quality relevant content in social media. Our
work diverges from reference [2] and [3] in that we explicitly
consider the effect of malicious user interactions. and focus
on modifying the ranking algorithm to be more resilient to
vote manipulation or “shilling”.

Our work is also related to integrating user interactions
and feedback into web search [10, 11, 12, 1]. For exam-
ple, implicit feedback in the form of result clickthrough was
shown to be helpful for web search ranking. One of the serious
problems when integrating user interactions to web search is
click spam [7]. Many studies have analyzed robustness of web
search ranking to click spam. Radlinski et al. [17] presented
how click noise/spam bias the ranking results. Jansen [7] re-
vealed the influence of malicious clicks on online advertising
search and Metwally et al. [14] explored how to identify fraud-
ulent clicks on advertisements. After a deep analysis on click
fraud in online advertising, Immorlica et al. [6] demonstrated
that a particular class of learning algorithms are resistant to
click fraud in some sense. Radlinski et al. [16] analyzed click
spam from a utility standpoint and investigated whether per-
sonalizing web search results can reduce spam. Several previ-
ous studies explored interactions spam in social systems. Hey-
mann et al. [15] surveyed the approaches and challenges for
fighting spam on social web sites. Mehta et al. [13] provided an
algorithm for detecting spam in collaborative filtering. In this
paper, we focus on a different setting of ranking in social me-
dia, and consider general methods of vote spam which exhibit
distinct attack methods and characteristics from click fraud.
We also explicitly validate the robustness of our method for
ranking in a community question answering setting.

/’m&@az\, /ﬁﬁaﬁ N A ;Qg‘]

Topic thread poster Responses creator Voter

*xp1 * xn,
*.sz Q xn;

Response! f----r-

Response2 }----r-

Response ny----r-

g p. & xn,

W e User Votes /

% 7

Figure 1: Illustration of social content and user votes
in social media service: Users can post topic threads
on social media sites Topic thread poster; Users can
also submit responses to topic threads Response cre-
ator; Many social media services allow users to vote
for existing responses using “thumb up” or “thumb
down”.

3. LEARNING RANKING FUNCTIONS IN SO-

CIAL MEDIA

Ranking functions are at the core of an effective search over
social media. We present a learning-based approach ranking.
In social media services, users can post some interesting topic
threads, such as questions(Yahoo! Answers), news(Digg) or
videos(Youtube), onto social media sites. These topic threads
will trigger responses from the users who supply related infor-
mation. Furthermore, users can give thumbs up or down votes
to those responses, which present users’ positive or negative
judgment on the quality of those responses. For example, in
Community Question Answering (CQA), a user can vote on
existing answers. We summarize the structure of social con-
tent and user votes in social media in Figure 1.

In this paper, we focus on the specific characteristics of so-
cial media and discuss how to employ user interactions, espe-
cially user votes, to rank the users’ responses. We employ the
similar framework in our previous work [3]. In the rest of this
section, we discuss how to represent textual and community
elements in social media as features. Based on the extracted
features and preference data, we apply the regression-based
gradient boosting framework [20, 5] to learn the ranking. The
material in this section summarizes our recently presented
GBrank system described in [3].

3.1 Features and Preference Data Extraction
We represent each query-topic-response triple (gr, tp, rp) as
a combination of textual features and user interaction fea-
tures.
Textual Elements: We consider the topic threads, user re-
sponses and queries (showed in Figure 1). We represent each
of these elements independently, using features such as “num-
ber of tokens for a query”, “how long has the topic thread
been posted”, “number of received votes for a response”, etc.
Then, we also extract textual features from relationship be-
tween topic threads, user responses and queries, describing
similarity between these three elements. For example, the
number of overlapping terms and token number ratio between
two of these three elements, etc.
User Interaction: As discussed before, there are three kinds
of roles each user may play in a social system, namely topic
thread poster, response creator and voter. Figure 1 shows the
interactions between these three roles. For each user in the
community of a social media, there are several features to de-
scribe his or her activities, such as “the number of topics he or
she posted”, “the number of responses he or she created”, etc.
These features to certain extent can approximate the user’s
expertise in the social media community. And user’s exper-
tise can in turn indicate the quality of his or her responses to
the topic threads. Similarly reputation of topic posters and
voters can also indicate quality of responses.

3.1.1 User Ratings as Preferences

as shown above, in many social media services, user evalua-
tion in the form of user votes is an additional important type
of user interaction/feedback. It is represented as the “thumbs
up” and “thumbs down” metaphors and implies users judg-
ment of the quality of content in social media.

We examine user vote data and extract a set of preference
data which can be used for ranking the responses as follows.
For each query gr, under the same topic thread tp, we con-
sider two existing responses rp1 and rpz. Assume that in the
user vote data, rp; has p; thumbs up votes and m; thumbs
down votes out of n; impressions while rp2 has pa thumbs up
votes and ms thumbs down votes out of ne impressions. We
want to consider response pairs rp; and rps2 to see whether rp;
is preferred over rpz2 in terms of their relevance to the topic
tp. In general, since different users vote for response rp; inde-
pendently, we assume that the number of thumbs up votes p;
in a sequence of n; impressions obeys binomial distribution,
showed as following:

n; k n;—p;
B(pi;ni,p) = (D)p (1—p)™~*
where p is the probability users post the thumbs up vote. We
utilize binomial distribution to model the number of votes be-
cause it is more effective and convenient to extract significant
pairs than other kinds of distribution, e.g. uniform distribu-
tion.

We use the approach in [20] and apply likelihood ratio test
to examine whether a pair of answers is significant or not,
i.e., whether there are enough votes to compare the pair. In
particular we compute the following statistic,

) = Bpi+paini +n2, (pr+p2)/(n1 + n2)) 2
- oy
B(p1;n1,p1/n1)B(p2; n2, p2/n2)

For a pair of response rp; and rp2, when the above value
is greater than a threshold, we say the pair is significant.
If rp1 and rp2 form a significant pair, we extract preference
data by comparing -—H—— with —22—— where s is positive
constant, i.e., if the former value is bigger than the later one,
then we say rp:1 is preferred over rp2 which is denoted by
rp1 > Tp2, and vice versa.

3.2 Learning Ranking Function from Prefer-
ence Data

Once the features and preference data are extracted, the
next question is how to use them for the purpose of learn-
ing a ranking function for social media. We apply a frame-
work for solving ranking problems from preference data [20].
This framework proposes a new objective function for learning
ranking function using preference data and develop an algo-
rithm that adapts functional gradient descent for optimizing
the proposed objective function. The idea behind the algo-
rithm in [20] is as follows: for each extracted preference, if
the ordering of the current ranking function contradicts the
extracted preference, we need to modify the value of rank-
ing function to force the ranking function to agree with the
preference as much as possible.

Suppose the set of available preferences is

S ={{zi,yi) | i = yi,i=1,.., N}

For each (z,y) € S, x, y denote the feature vectors for two
query-topic-response triples with the same query. « > y
means that x is preferred over y, i.e. x should be ranked
higher than y. In other words, the answer in z is considered
more relevant than that in y with respect to the same query
in both triples.

In [20], the problem of learning ranking functions as com-
puting a ranking function h, such that h match the set of
preferences, i.e., h(z;) > h(ys), if x; > y;, ¢ = 1,...,N as
much as possible. The following objective function is then

used to measure the risk of a given ranking function h,

N

R(R) = 5 " (max {0, h(y:) — h(wa)})?

=1

We summarize the algorithm for learning ranking function
h using gradient boosting as in Figure 2. Two parameters
need to be determined: the shrinkage factor and the number
of iterations, this is usually done by cross-validation [20].

Algorithm GBrank:
Start with an initial guess hg, for k= 1,2, ...

1. Using hj—1 as the current approximation of h, we sep-
arate S into two disjoint sets,

ST =z, i) € Slhr-1(z:) 2 hea(y:) +7)

ST = {{mi,yi) € Slhe—1(z:) < ha—1(y:) +7}

2. Fit a regression function gx(z) using Gradient Boost-
ing Tree[9] and the following training data

{(za, b1 () + 7), (53, k=1 (2) — 7)|[{wi, 95) €57}
3. Form the new ranking function as

() = _kh'k—l(slingk(l’)

where 77 is a shrinkage factor.

Figure 2: GBrank Algorithm.

4. VOTE SPAM IN SOCIAL MEDIA

As discussed before, user votes are valuable to evaluate the
quality of user responses related to topic threads. In our con-
sideration, there are two main types of vote spam in social
media: incorrect votes and malicious votes. The user who
gives the votes may not be an expert to the topic thread and
related responses, therefore it is likely that its votes are in-
correct. In another case, some malicious users intend to pro-
mote some specific responses within the community of social
media, and they attack the social media service by creating
a number of thumbs up vote to the specific responses. For
example, in order to do online advertising in social media ser-
vices, malicious users post their advertisement into responses
to some topic threads and promote those responses by intro-
ducing amount of thumbs up votes. In another way, they
can submit thumbs down votes to decrease the rank of high
quality responses.

4.1 Vote Spam Attack Models

In this paper, we will focus on the influence of malicious vote
attack and analyzing the robustness of our ranking frame-
work. In the rest of this section, we will introduce a general
vote spam model in the social media service.

We simulate the vote spam attack as following: Given the
whole set of topic threads is TP = {tp1,tp2, - ,tpm}, we
assume that 3% of them are attacked by malicious votes. As
the goal of vote spam is to promote advertisement or other
information from malicious users, those attackers tend to post
and promote some the specific responses under popular topic
threads. Thus, if a topic thread is more popular, i.e. followed
by much more responses, it is more likely to be attacked. In
this paper, the probability that a topic thread is included in
8% attacked thread set is proportional to the number of its
responses.

As the set of topic threads to be attacked has been selected,
the number of attackers to each topic thread may be different.
In our approach, we assume Gaussian distribution to simulate
the number of malicious users for each topic thread. We use
N, to denote the number of attackers to the topic thread tp;,
then

N; NN(M:"'Q)

Note that we can describe various number of attackers by sim-
ply changing the value of p in Gaussian distribution. Other
methods can also be used to simulate the number of malicious
users.

For each topic thread to be attacked, we consider two gen-
eral attack strategies, thumbs up votes spam and thumbs
up&down votes spam. For thumbs up votes spam, malicious
users aim to promote single response for one topic thread,
so that they will propose thumbs up votes to the specific re-
sponses as many as possible. Using thumbs up&down votes
spam, malicious users will give thumbs down votes to other
responses in addition to thumbs up vote for one specific re-
sponses. In this way, attackers can promote specific responses
by decreasing the ranking of others.

The next question is how many thumbs up or down votes
malicious users will “contribute” for a particular topic. Most
community portals and social media services enforce strict
budget rules for user votes which constrain the number of
votes one user can give. In our simulated attack approach,
we assume an unlimited overall voting budget for a user, but
include a common restriction that any user can vote (thumbs
up or down) at most once for each item.

plus vote spam:
one plus vote to
chosen response

plus-minus vote spam:
one plus vote to
chosen response

AND one minus vote

to each others

chose thread chosen thread

Choose number of Choose one
Choose (% topic attackers based on response to
threads to attack N(p,0?) for each promote for each

Figure 3: Summary of the stochastic vote spam gen-
eration process.

Figure 3 summarizes our attack models: First, we choose
3% topic threads to attack; Then, the number of attackers
for each attacked thread is decided based on Gaussian dis-
tribution; After selecting one response to promote for each
attacked thread, we can choose one attack strategy which is
either plus vote spam or plus-minus vote spam. In the next
section, we will study Community Question Answering(CQA)
service. We use the proposed framework for learning ranking
function for QA retrieval as well as evaluate the robustness of
learned ranking against vote spam.

5. COMMUNITY QUESTION ANSWERING

In this paper, we will focus on the specific characteristics
of social Question Answering services. In the rest of this sec-
tion, we will discuss how to employ CQA specified features
especially user votes for ranking as well as how to evaluate
the robustness of QA retrieval against vote spam.

5.1 Learning to Rank for Community QA

Community QA is a particularly popular form of social me-
dia, drawing millions of users to ask and answer each others’
questions. Similar to other social media services, community
QA services such as Yahoo! Answers provide several types of
interactions among users that are specific to the QA domain.
Users in Yahoo! Answers do not only ask and answer ques-
tions, but also actively participate in regulating the system.
A user can vote for answers of other users, mark interesting
questions and even report abusive behavior.

In order to define the problem of QA retrieval, we first ab-
stract the social content in the QA system as a set of question-
answer pairs:

(gst;,ans?)

where gst; is the ith question in the whole archive of the QA
system and ans] is the jth answer to this question. Given a
user query, our goal is to order the set of QA pairs according
to their relevance to the query, and the ordering is done by
learning a ranking function for triples of the form,

(qrk, qsts, ans{),

where gry is the k-query in a set of queries.

In our approach for learning QA ranking function, we will
first extract textual features related to question, answer and
query as well as social features related to user interactions
described above. In addition, we also extract preference data
from user votes. Then, based on the learning framework dis-
cussed in Section 3.2, we will obtain the ranking function for
QA retrieval.

5.2 Robust Ranking Method

As shown in Section 6 and our previous work [3], our rank-
ing function (GBrank) exhibits promising performance on QA
retrieval. Our experiments demonstrate that user vote infor-
mation provides much contribution to the high accuracy of
our GBrank, when there is no vote spam. However, if user
votes in CQA have been polluted by spam from malicious
users and we continue using GBrank trained by clear data
without vote spam, GBrank will still put much reliance on
user vote information which however is supplying inaccurate
information due to the spam.

In order to create a robust ranking method, we enhance
our GBrank by using polluted training data during learning
process. We apply the general vote spam model, described in
Section 4, to generate vote spam into unpolluted QA data.
Then, we train the ranking function based on new polluted
data. To distinguish with GBrank trained by clear data, we
denote our new ranking function as GBrank-robust. GBrank-
robust is able to automatically account for the observed noise
in the preference features, transferring more weight to other
content and community features. Therefore, GBrank-robust
can outperform the original GBrank method where simulated
vote spam was not introduced at training time.

In the rest of this section, we will present our evaluation
setup. First we describe our dataset including the queries and
the corresponding corpus of questions and answers. Then we
describe our evaluation metrics and the ranking methods to
compare for the experimental results reported in Section 6.

5.3 Datasets

Factoid questions from the TREC QA benchmarks We
use factoid questions from seven years of the TREC QA track
evaluations (years 1999-2006)° for the experiments reported
in Section 6. It is worth noting that TREC questions from
the years 1999 to 2003 are independent of each other: each
question is self-contained and we submit directly as the query.
Starting from 2004, however, the questions are organized in
groups with a ‘target’. For those questions, we submit their
‘target’ as well as the questions themselves. In total, approx-
imately 3,000 factoid TREC questions were compiled as the
initial set of queries.

Since we need some candidate answers from Yahoo! An-
swers to estimate how well different ranking functions per-
form, we select the 1250 TREC factoid questions that have at
least one similar question in the Yahoo! Answers archive.
Question-answer collection dataset Our dataset was col-
lected in order to simulate a user’s experience with a com-
munity QA site. We submit each TREC query to the Yahoo!
Answers web service* and retrieve up to 10 top-ranked related
questions according to the Yahoo! Answers ranking. For each
of these Yahoo! questions, we retrieve as many answers as
there are available for each question thread. There are, in
total, 89642 (query, question,answer) tuples. 17711 tuples
(19.8%) are labeled as “relevant” while 71931 (81.2%) are la-
beled as non-relevant.

Relevance Judgments In our experiment, the data are la-
beled in two ways: by using the TREC factoid answer pat-
terns, and, independently, manually in order to validate the
pattern-based automatic labels. For automatic relevance la-
bels, we check every answer’s text body, and if the text matches
one of the answer patterns, we consider the answer text to be
relevant, and non-relevant otherwise. In order to validate the
accuracy of our automatically-assigned relevance labels, we in-

3http://trec.nist.gov/data/qa.html
“http://developer.yahoo.com/answers/

dependently labeled a number of answers by hand. The man-
ually labeled answers were compared with the automatically
generated labels, resulting in over 90% agreement between
the automatic and manual methods. In summary, automati-
cally generated labels, even though with some small degree of
noise, nevertheless exhibit high agreement with manual rel-
evance judgments, and serve as a good proxy for comparing
rankings.

Vote Spam Recall that there may already be some spam in
the original data, but it is limited as we are experimenting
with past data that has been cleaned to large extent by the
Yahoo! team. Therefore, we need to inject vote spam by
ourselves. The model of vote spam has been discussed in
Section 4. We will describe the parameters of the settings of
vote spam in Section 5.6.

5.4 [Evaluation Metrics

We adapt the following information retrieval metrics to
evaluate the performance of the ranking function. Note that
none of the metrics require a single best answer for a ques-
tion. Rather, any correct answer is included in the metric
computation.

e Mean Reciprocal Rank(MRR): The MRR of each
individual query is the reciprocal of the rank at which
the first relevant answer was returned, or 0 if none of
the top N results contained a relevant answer.The score
for a sequence of queries is the mean of the individual
query’s reciprocal ranks. Thus, MRR is calculated as

1 1
MRR= —— %" —
|Qr| acor ' a

where Qr is a set of test queries, rq is the rank of the
first relevant document for q.

e Precision at K: for a given query, P(K) reports the
fraction of answers ranked in the top K results that are
labeled as relevant. In our setting, we require a rele-
vant answer to be labeled “matched” for TREC pattern.
For this metric, the position of relevant answers within
the top K is irrelevant, while it measures overall user
potential satisfaction with the top K results.

e Mean Average of Precision(MAP): Average preci-
sion for each query is defined as the mean of the preci-
sion at K values calculated after each relevant answers
was retrieved. The final MAP value is defined as the
mean of average precisions of all queries in the test set.
This metrics is the most commonly used single-value
summary of a run over a set of queries. Thus, MAP is
calculated as

1 XL (P(r) xrel(r))
MAP = 1o 2 R

where Qr is a set of test queries, Ry is the set of relevant
document for g, r is the rank, N is the number retrieved,
rel() is a binary function on the relevance of a given
rank, and P() is precision at a given cut-off rank.

5.5 Ranking Methods Compared

To evaluate the QA retrieval quality, we compare the qual-
ity of following methods:

e Baseline: In this method, the answers are ranked by
the score computed as the difference of positive votes
and negative votes received for each answer. This rank-
ing closely approximates the ranking obtained when a
user clicks “Order by votes” option on the Yahoo! An-
swers site.

e GBrank: Ranking function with textual and commu-
nity /social features: this is our method presented in Sec-
tion 3.2.

e GBrank-robust: Similar to GBrank, we utilize tex-
tual and community features to train ranking function.
However, the training data is polluted according to the
chosen spam model. We will discuss how to evaluate
vote spam’s influence on QA retrieval in Section 5.6.

Since our data set is constructed automatically by querying
Yahoo! Answers for TREC questions, we need to adjust the
computation of the metrics for the Baseline method to match
the user experience, if she had submitted such a question to
the Answers’ search service. The adjustment is necessary as
there may be multiple Yahoo! Answers questions retrieved,
and (presumably) the user would select the most relevant one.
To match this experience, if our test question retrieves multi-
ple Y!A question threads, we take the mazimum of the MRR
(or MAP or Precision) values for each thread. Hence, in a
sense our Baseline is particularly strong in that it assumes a
perfect ranking of the question threads (more generally, top-
ics) by the Yahoo! Answers search engine.

5.6 Evaluation on Robustness of Ranking to Vote
Spam Attack

To evaluate the robustness of proposed QA ranking algo-
rithm, we compare the performance of the ranking algorithm
in the situation with vote spam and without spam. In detail,
we consider the following settings of vote spam and evaluate
their influence on performance of ranking respectively:

e Scope of Vote Spam: The scope of vote spam is mea-
sured by the percentage of attacked question threads
(8). We will compare the performance of ranking under
vote spam attack when the number of attacked topic
threads (8%) is of different value.

Number of Attackers: We will compare the performance
of ranking under vote spam attack when the number
of attacker varies. In our paper, the number of at-
tacker for each question thread obey Gaussian distri-
bution(Section 4.1). In this paper, we fix the variance
o2 in Gaussian distribution and model the number of
attackers by using different mean pu.

o Attack Strategy: We will compare the performance of
ranking under two different strategies of vote spam at-
tack: thumbs up vote spam and thumbs upédown vote
spam. In this first strategy, malicious users promote
one specific answer only by adding thumbs up votes to
it. In the second one, attackers submit not only thumbs
up votes to the specific answer but also thumbs down
votes to the other answers in the same question thread.

6. EXPERIMENTAL RESULTS

In this section, we will describe our large scale experiments.
These experiments are used to demonstrate that 1) GBrank
method is effective to learn ranking function for social media;
2) how vote spam influence ranking performance; 3) GBrank-
robust is robust to vote spam in certain scope and 4) how var-
ious features affect GBrank-robust’s robustness to vote spam.

6.1 Learning Ranking Function

To learn the ranking function, we generate the training and
testing data as follows: we randomly select 800 TREC queries
from total 1250 TREC queries and collect all the related QA
for these 800 queries. As mentioned in Section 5.3, the rel-
evance judgments was obtained by matching an answer with
TREC answer patterns. We have also found that 90% of items
were given the same labels under both manual labeling and
TREC pattern labeling and the remaining 10% of automatic
labels were erroneous. And we use ten-fold cross validation to
perform the training of the proposed ranking function using
the algorithm introduced above.

To discover the convergence behavior of GBrank, we mea-
sure the performance for the hold-out validation data against
each iteration of our learning algorithm. We find that the al-
gorithm converges after 60 iterations. Thus, for the following
experiments, we stop at 60 iterations for training GBrank.

Table 1: MRR and MAP for GBrank and Baseline
with clean training and testing data

MRR | MAP
Baseline || 0.662 | 0.441
GBrank || 0.782 | 0.465

In Table 1, we illustrate the MAP and MRR scores for the
baseline method as well as GBrank. There is no vote spam in
training or testing data.

1

—A— MRR GBrank
0.9} { —B— MAP GBrank
— % — MRR Baseline
—+—MAP Baseline

MRR/MAP score

-
50 100 200 300 400 500 600 700 800
Size of training dataset

Figure 4: Mean Reciprocal Rank(MRR) and Mean
Average Precision(MAP) for GBrank for varying the
training set size.

We vary the training size for learning the ranking func-
tion. Figure 4 reports the MRR and MAP scores for the hold
out validation data against different size of training dataset.
We can see that MRR and MAP scores increases when the
training dataset become larger. The scores remain stable af-
ter training size is larger than about 400. It is also clear to
see that GBrank outperform than baseline method both for
MAP and MRR when there are more than 300 questions for
training.

6.2 QA Retrieval

In this experiment, we investigate the performance of QA
retrieval under the attack of vote spam.

In order to simulate vote spam, we use the method de-
scribed is Section 4.1 to add vote spam in dataset: we first
sample 10% question threads to be attacked, denoted as
{q1,92, -+ ,qs}. Then, we assume the number of attackers
obeys the Gaussian distribution whose mean is 3 and variance
is 1 and sample attacker numbers for each attacked thread,
denoted as {Ni,Na2,---, N} respectively. In each sampled
question thread ¢;, we randomly select one answer which will
be promoted by malicious users. And we use thumbs up vote
spam strategy for attacking, i.e. adding N; thumbs up votes
to the specific answer in ¢; respectively. In the following ex-
periment, we use this attack model by default.

In our experiment, we train two ranking functions, GBrank-
robust and GBrank, on training data (i.e., the 800 TREC
queries) with vote spam and training data without vote spam
respectively. The remainder hold-out testing data (i.e. 450
TREC queries and associated community QA pairs) is added
with vote spam. Then, using the polluted testing data, we
evaluate the performance for two ranking functions and base-
line method.

Figure 5 illustrate the Precision at K of GBrank and GBrank-
robust compared with the baseline method. Testing data for
all the three metrics are extracted from polluted dataset.
(Vote spam model: % = 10%, 4 = 3 and o> = 1). This
figure shows that, under the situation that test data is pol-
luted with vote spam, GBrank-robust still performs better
than baseline method, but GBrank does not obtain better
performance than baseline.

In Figure 5, we also demonstrate the Precision at K of
GBrank and GBrank-robust when they are evaluated using
unpolluted testing data. It is clear to see that GBrank-robust
is “graceful” in that it is not much worse than original GBrank

0.8

T T T
—6— GBrank-robust
3 —8— GBrank
0751 —=4A— Baseline
. X -+ GBrank (clear data)
0.7 : + GBrank-robust (clear data)|4

o
o
o

Precision@K

Figure 5: Precision at K for Baseline, GBrank and
GBrank-robust for various K.

when there is actually no vote spam.

Table 2: Mean Reciprocal Rank (MRR) and Mean
Average Precision (MAP) for GBrank, GBrank-
robust and Baseline

MRR | MAP

GBrank 0.648 | 0.416
Baseline 0.624 | 0.405
GBrank-robust || 0.736 | 0.457

In Table 2, we illustrate the MAP and MRR scores for
the baseline method as well as GBrank and GBrank-robust.
From the table, it is clear that GBrank-robust reaches much
better performance than GBrank and baseline method. In
particular, GBrank-robust still achieves a gain of about 15%
relative to the baseline.

To understand how two GBrank functions can outperform
an “oracle” baseline, consider that the ordering of answers
within a question thread remains fixed (either by date — as
the default, or by decreasing votes). In contrast, GBrank ob-
tains a better ranking of answers within each question thread,
as well as a global ranking of all answers. Then, improved
ranking within each Yahoo questions thread contributes to
the higher score than baseline. Overall, applied on Yahoo!
Answers, our proposed framework achieves a significant im-
provement on the performance of QA retrieval over the Yahoo!
Answers’ default ranking and the supported optional votes-
based ranking. In addition, from the experiment, we can find
that our method is able to retrieve relevant answers at the top
of results. In summary, we have shown that GBrank-robust
significantly outperforms extremely strong baselines, achiev-
ing precision at 1 of nearly 70% and MRR of over 0.73, which
are high values even for traditional QA retrieval.

6.3 Robustness to Vote Spam

In this section, we perform experiments to evaluate the ro-
bustness of our ranking function to user vote spam. As dis-
cussed in Section 4.1, there are three parameters to decide
the model vote spam attack: scope of vote spam, number
of attackers and attack strategy. We will also assess the vote
spam influence on our ranking function under various settings
of attack model.

In the following, we illustrate the influence of vote spam on
G Brank-robust under various settings of attack model. Note
that GBrank-robust is trained using default vote spam model
(8% = 10%, p = 3 and o = 1). In particular, we evaluate
our model’s sensitivity to various parameter settings by using
the testing data polluted by different vote spam model.
1. Number of attackers
First, we explore whether the number of attackers for each
question thread affects GBrank-robust performance. As dis-
cussed above, we model number of attackers for each thread
as Gaussian distribution(A(u,0?)). In our experiment, we
fix 02 to 1 and only use thumbs up vote spam for the test-
ing data. The other parameters remain default values shown

o
o

MAP score
o o o
N9 w 92 »
(5] w a S (5]

o
N

0.15 - A - Baseline: thumbs up vote spam X 1

¢ Baseline: thumbs up&down vote spam N

0.1 — % — GBrank: thumbs up vote spam My

— + — GBrank: thumbs up&down vote spam 'o_ A

—&— GBrank-robust: thumbs up vote spam o

—©— GBrank-robust: thumbs up&down vote spam|
0 2 4 6 8 10

[

0.05|

Figure 6: MAP scores for GBrank-robust, GBrank
and Baseline for various mean number of attackers.
‘We calculate the scores for thumbs up vote spam and
thumbs up&down vote spam respectively.

above. Figure 6 illustrate the MAP scores of GBrank-robust,
GBrank and baseline method under vote spam with different
number of attackers for the test data, i.e. various value of pu.
These figures shows that the performance of GBrank-robust
outperform than both GBrank and baseline when there are
vote spam in testing data. Although it declines as the aver-
age number of attackers increases, GBrank-robust, as we can
see, is more robust to the vote spam.

0.5 T T T T T T T T T

0.45}

0351

o
w

MAP score
o
)
a

o

A - Baseline: thumbs up vote spam
¢ Baseline: thumbs up&down vote spam
— % — GBrank: thumbs up vote spam
— + — GBrank: thumbs up&down vote spam
—&— GBrank-robust: thumbs up vote spam

—&— GBrank-robust: thumbs up&down vote spam|))

0.0

0 5% 10% 15% 20% 30% 40% 50% 60%
B

0.1

Figure 7: MAP scores for GBrank-robust and Base-
line for various scope of vote spam. We calculate the
scores for thumbs up vote spam and thumbs up&down
vote spam respectively.

2. Scope of vote spam

Second, we investigate whether the scope of vote spam influ-
ences GBrank-robust performance. In our experiment, we use
both thumbs up vote spam and thumbs up&down vote spam
strategies and the other parameters remain default values ex-
cept percentage of attacked question threads. Figure 7 illus-
trate MAP scores of GBrank-robust on the testing data which
are polluted by different scope of vote spam, i.e. various value
of B%. It is showed that the performance of GBrank-robust
outperform than both GBrank and baseline when there are
vote spam in testing data. Although it declines while the
scope of vote spam arises, GBrank-robust, as we can see, is
more robust to the vote spam.

3. Attack Strategy

In addition, to gain understanding of how different spam strate-
gies achieve different decreasing on performance, we perform
the same experiment and illustrate the results in Figure 6
and 7. From these figures, it is obvious to see that thumbs
up&8down vote spam can cause more serious loss on ranking
performance than thumbs up vote spam. We consider the rea-
son behind is that thumbs up&down vote spam probably dis-
order much more the correct preference as this strategy gives
more vote spam than thumbs up vote spam.

6.4 Analyzing Feature Contributions

To gain a better understanding of the important features for
this domain we perform an ablation study on our feature set
to explore which features are significant to answers ranking.

0.9 T T

T T
—O— GBrank: All features
—H— GBrank: No textual features
0.8 —A— GBrank: No community features |
—¥— Baseline

0.6 1

Precision@K

0.3 d

0.2 L L

Rw

Figure 8: Precision at K for feature ablation study
using clean data (GBrank)

As discussed in Section 5.1 there are two major categories
of our feature set: textual features and community features.
Figure 8 reports the Precision at K when learning ranking
function with removing each category respectively. It is easy
to see that the performance of GBrank is worse than baseline
method when neglecting either category of features. Inter-
estingly, textual features are less important for Precision at
1. We hypothesize that for the top result it is more impor-
tant for an answer to be chosen as “best” by the asker (one
of the community features), than to have appropriate textual
characteristics.

0.8 1

0.7

0.6

MRR score

0.5

0.4r —H&— GBrank-robust: No textual features 1
—A— GBrank-robust: No community/social features|
—O— GBrank-robust: All features

o3r - % — Baseline]

oY
0 50 100 200 300 400 500 600 700 800
size of training dataset

Figure 9: Mean Reciprocal Rank(MRR) for GBrank-
robust with different size of training data on feature
ablation study. The MRR for baseline using polluted
data is also shown in the figure.

In addition, we also carry out an ablation study when train-
ing and testing data have been polluted by vote spam. Fig-
ure 9 illustrates the MRR scores when learning ranking func-
tion with all features or removing one of categories, and the
learning is based on various size of polluted training data.
The MRR score of baseline method is presented in the fig-
ure as well. From the figure, we can find that removing ei-
ther textual features or community features cause a significant
degradation of performance, especially for small amounts of
training data. Even in the presence of vote spam, our ranker
with all of the features is able to outperform the baseline after
only 300 questions in the training set. In summary, we have
shown that our ranker is both effective and robust to a variety
of vote spam methods.

We evaluate the feature contributions for all the features
both when training and testing data are polluted by spam
and when neither is polluted. Table 4 shows the Information

Gain for all features when training and testing data have been
polluted by vote spam; While Table 3 shows the Information
Gain for all features when training and testing data have been
polluted by vote spam.

Table 3: Information Gain for all features both when
training and testing data are not polluted

Info Gain Feature Name
0.048 similarity between query and question
0.045 number of resolved question for answerer
0.043 length ratio between query and answer
0.032 number of thumbs down vote
0.030 number of stars for answerer
0.021 number of thumbs up vote
0.014 similarity between query and gst + ans
0.013 number of answer terms
0.013 number of question asked by answerer
0.011 answer’s lifetime

Table 4: Information Gain for all features both when
training and testing data are polluted

Info Gain Feature Name
0.048 similarity between query and question
0.045 number of resolved question for answerer
0.043 Iength ratio between query and answer
0.029 number of stars for answerer
0.026 similarity between query and gst + ans
0.018 number of answer terms
0.013 number of question asked by answerer
0.011 answer’s lifetime
0.010 number of question terms
0.009 length ratio between query and question
0.003 number of thumbs down vote
0.002 number of thumbs up vote

From these two tables, we can find that (1) some textual
features and community features have much influence on the
ranking function. (2) When there is no spam in training and
testing data, user vote information is important to ranking
results. (3) However when incorporating vote spam in train-
ing and testing data, both of them contribute much less than
before. Therefore, vote spam can give rise to a little decreas-
ing on the performance of ranking function; however, due to
the contribution of textual features and community features,
our ranking function works in a robust way.

Based on our experiments reported in this section, we con-
clude that GBrank-robust is resilient to vote spam under var-
ious settings of the vote spam attack model. And even when
the test data does not have overt vote spam, GBrank-robust
degrades only slightly over our original GBrank method (and
still performs significantly better than a state-of-the-art base-
line). We also observe that GBrank-robust is not sensitive to
the specific parameters of the vote spam model. Our feature
analysis shows that GBrank-robust manages to automatically
assign more weight to the textual and other more difficult-to-
spam interaction features when properly trained.

7. CONCLUSIONS

Social media is transforming the way people find and eval-
uate information online. Users do not only share information
on social media sites, but also contribute their ratings of the
content. As such, user feedback has become a crucial mech-
anism for content quality control, ranking, and filtering. Un-
fortunately, as the popularity of community and social media
sites grows, so do the incentives and incidents of malicious
user behavior, such as vote spam.

We have presented a robust, effective method which incor-
porates social and content information for retrieving infor-
mation from social media. In particular, we focused on the
robustness of ranking in the presence of malicious feedback
(vote spam), analyzing general models for common vote spam
strategies and developing a training method that improves

the robustness of ranking by injecting simulated spam into
the training data. Our extensive experiments on a particu-
larly important case of social media —Community Question
Answering— demonstrated the effectiveness of our approach,
which is robust in that the accuracy of ranking degrades grace-
fully with increased spam, better than unpolluted model. Fur-
thermore, we have shown that our method of training is re-
silient to vote spam that is significantly different from the
training data. In the future we plan to explore further the
different spam strategies and corresponding robust ranking
methods.

ACKNOWLEDGMENTS We are grateful for the support
of the Yahoo! Answers team to allow extensive usage of the
Answers search API, and to Ke Zhou from Shanghai Jiaotong
Univ. for the implementation of the GBrank algorithm.

8[1] E}.{Egll:c‘ggll%yggl,sand S. Dumais. Improving web search

ranking by incorporating user behavior information. In
Proceedings of SIGIR, 2006.

[2] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and
G. Mishne. Finding high-quality content in social media with
an application to community-based question answering. In
Proceedings of WSDM, 2008.

[3] J. Bian, Y. Liu, E. Agichtein, and H. Zha. Finding the right

facts in the crowd: Factoid question answering over social

media. In Proc. of 17th International World Wide Web

Conference (WWW2008), 2008.

E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr

question-answering system. In Proceedings of EMNLP, 2002.

[5] J. Friedman. Greedy function approximation: a gradient
boosting machine. In Ann. Statist., 2001.

[6] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar. Click
fraud resistant methods for learning click-through rates. In
Workshop on Internet and Network Economics (WINE),
2005.

[7] B. J. Jansen. Adversarial information retrieval aspects of

sponsored search. In Proc. of the 2nd international workshop

on adversarial information retrieval on the web (AIRWeb),

2006.

J. Jeon, W. Croft, and J. Lee. Finding similar questions in

large question and answer archives. In Proceedings of CIKM,

2005.

[9] J. Jeon, W. Croft, J. Lee, and S. Park. A framework to
predict the quality of answers with non-textual features. In
Proceedings of SIGIR, 2006.

[10] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of KDD, 2002.

[11] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as implicit
feedback. In Proceedings of SIGIR), 2005.

[12] D. Kelly and J. Teevan. Implicit feedback for inferring user
preference: A bibliography. In SIGIR Forum, 2003.

[13] B. Mehta, T. Hoffmann, and P. Fankhauser. Lies and
propaganda: detecting spam users in collaborative filtering.
In Proc. of the 12th International Conference on Intelligent
User Interfaces (IUI), 2007.

[14] A. Metwally, D. Agrawal, and A. E. Abbadi. Detectives:
Detecting coalition hit inflation attacks in advertising
networks streams. In Proc. of the International World Wide
Web Conference (WWW), 2007.

[15] H. P, G. Koutrika, and H. Garcia-Molina. Fighting spam on
social web sites: a survey of approaches and future
challenges. In Internet Computing, IEEE, 2007.

[16] F. Radlinski. Addressing malicious noise in clickthrough data.
In Proc. of the 3rd international workshop on adversarial
information retrieval on the web (AIRWeb), 2007.

[17] F. Radlinski and T. Joachims. Minimally invasive
randomization for collecting unbiased preferences from
clickthrough logs. In Proc. of the National Conference on
Artificial Intelligence (AAAI), 2006.

[18] Q. Su, D. Pavlov, J. Chow, and W. Baker. Internet-scale
collection of human-reviewed data. In Proc. of the 16th
international conference on World Wide Web (WWW2007),
2007.

[19] E. M. Voorhees. Overview of the TREC 2003 question
answering track. In Text REtrieval Conference, 2003.

[20] Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression
framework for learning ranking functions using relative
relevance judgments. In Proc. of SIGIR, 2007.

[4

8

