
Query-log mining for detecting spam

Carlos Castillo‡

chato@yahoo-inc.com
Claudio Corsi†

claudio.corsi@gmail.com
Debora Donato‡

debora@yahoo-inc.com
Paolo Ferragina†

ferragina@di.unipi.it
Aristides Gionis‡

gionis@yahoo-inc.com
‡Yahoo! Research Labs †Dipartimento di Informatica

Barcelona, Spain University of Pisa, Italy

ABSTRACT
Every day millions of users search for information on the web via
search engines, and provide implicit feedback to the results shown
for their queries by clicking or not onto them. This feedback is
encoded in the form of a query log that consists of a sequence of
search actions, one per user query, each describing the following
information: (i) terms composing a query, (ii) documents returned
by the search engine, (iii) documents that have been clicked, (iv)
the rank of those documents in the list of results, (v) date and time
of the search action/click, (vi) an anonymous identifier for each
session, and more.

In this work, we investigate the idea of characterizing the docu-
ments and the queries belonging to a given query log with the goal
of improving algorithms for detecting spam, both at the document
level and at the query level.

1. INTRODUCTION
We start from the classic definition of click graph [1, 4], and we

introduce two novel graph definitions: the view graph and the an-
ticlick graph. We study the use of these graphs for characterizing
the spammicity of queries and documents, and propose two novel
syntactic and semantic features to be used for web-spam detection
by means of a standard classifier. The syntactic features are de-
fined for the document nodes of such graphs, and aim at capturing
the query attractiveness of a document based on the distinctness
of the queries adjacent to it in those graphs. The semantic features
are defined on all nodes of the graphs (documents and queries),
and are based on a novel concept of entropy defined on the distri-
bution of inferred categories for the topics of that node.

In order to get topical data, we follow [1, 9, 12, 16] and start
from the labeling information available for a small set of topically-
categorized pages in the considered graphs derived from the Open
Directory Project (DMOZ). Next we propagate those category la-
bels in the graph in order to obtain labels for queries and for pre-
viously unlabeled documents, together with their strength of as-
sociation. Through this propagation algorithm, queries and docu-
ments do not obtain a single category label but a probability dis-
tribution over all possible labels. This distribution can be used to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AIRWeb ’08, April 22, 2008 Beijing, China.
Copyright 2008 ACM 978-1-60558-159-0 ...$5.00.

provide measures regarding whether queries and documents are
multi-topical or not, and thus be used as indicators of query attrac-
tiveness, and thus potential spammed documents or queries. The
idea to propagate labels through a graph structure is not new [11,
16, 4, 13], but unlike previous research, we propose to use the cat-
egory propagation as an intermediate step towards the computation
of new features which can improve current machine learning meth-
ods for spam detection [3, 6, 7, 15, 5]. We deploy the syntactic and
semantic features in two applications:

Web spam detection. Our intuition is that spammers have an
incentive to aim at the top results of frequent queries, and to aim
at queries that are semantically far apart from each other in order
to cover the largest web audience. So, instead of concentrating on
adapting to specific techniques that spammers use to create their
sites, we concentrate on the eventual outcome of their techniques
by detecting specific structural and content patterns in the query
log graphs.

Query spam detection. We are interested in detecting all those
queries that generate a high number of spam pages placed in the
first top-N positions of their answer lists. Detection of such queries
can be used for improving quality of search results by, say, apply-
ing a more aggressive spam threshold on pages shown for spam-
attracting queries, or by using those queries to design more sophis-
ticated spam-detection algorithms.

2. PRELIMINARIES AND NOTATION
The click graph C = (VQ, VD, E) is an undirected, weighted

and labeled bipartite graph, consisting of a node set VQ ∪ VD and
an edge set E. Nodes in VQ denote the set of distinct queries
occurring in a query log, nodes in VD denote a set of distinct doc-
uments, and an edge (q, d) ∈ E denotes the fact that the query
q ∈ VQ has led some user to click on the document d ∈ VD .
Edge (q, d) ∈ E has associated a weight w(q, d), which denotes
the strength of the relation between q and d. We will consider two
weights: (i) the number of times query q led a user to click on
document d; (ii) the number of distinct search-sessions in which
q clicked on d. We also use Nk(x) to denote the set of nodes in
G that lie at distance exactly k from node x, and use N≤k(x) =
∪i=1,...,k Ni(x) to indicate the set of nodes in G that lie at dis-
tance at most k from node x.

Starting from the click-graph we define two alternative graphs:

View graph. We replace the edge set E of the click graph with the
one containing edges (q, d) where q is the issued query and d is the
document whose URL has been viewed in the answer list returned
to the user, but has been not necessarily clicked by that user. The
view graph is a generalization of the click graph since each click
is also a view. Moreover a query could produce no click and so
be not present in the click graph, but be present in the view graph.

We notice that the view graph is more noisy than the click graph
because it does not contain any user feedback. Nonetheless it can
be still useful to detect spam sites, since spam sites try to be in
the answer lists of different queries, while users do not necessarily
click on those spam sites.
Anticlick graph. We define the anti-click graph Ar , containing
an edge (q, d) whenever (i) the document d appeared in the top-
r positions of the ranked list of results for the query q, (ii) the
user who submitted q did not click on d, but (iii) the user clicked
on another document ranked below d. This type of negative feed-
back was shown to be useful by [10]. The anti-click graph intends
to capture the negative judgment that users give implicitly to the
r-top ranked documents when ignoring them by clicking on docu-
ments ranked below. It is reasonable to consider small values for
r as we do in our experiments, for which we set r = 3.

The above graphs (click, view and anti-click) can be defined on
hosts by replacing the set of document nodes with their hosts. We
notice that, although it is very common to see spam pages on a
good host (e.g. forum or guestbook is defaced, or a host have been
hacked), our experiments of section 4 shows that our approach on
host-graphs is robust and improves known results.

In the rest of this paper we will refer to these graphs as, in order:
Cd and Ch, Vd and Vh, Ad and Ah. When there is no need to
distinguish among those graphs we will use the generic name G.
Additionally, for every node x ∈ VQ ∪ VD ∪ VH , we associate
a string `(x) describing the node: if x ∈ VQ, `(x) is the query
string, otherwise x ∈ VD or x ∈ VH then `(x) is the document
URL/host string.

3. QUERY GRAPH MEASUREMENTS
Driven by our applications on spam query/document detection,

we define features on our graphs that will then be used for building
machine-learning models.

3.1 Syntactic features
The most obvious feature is simply the degree of a node. For a

document d, |N1(d)| is the number of queries adjacent to d. This
set provides a “good description” of the content of document d [17,
8]. Similarly, for each query q we consider |N1(q)|, the number
of distinct documents clicked for q. Next we want to refine this
feature and concentrate on popular elements based on frequencies:

• For each document d, we define topQx(d) as the set of
queries adjacent to d in G and being among the fraction x
of the most frequent queries in the query log. We consider
x = 0.01, 1.0, where topQ1.0(d) = N1(d), and select as a
feature the cardinality |topQx(u)|. We notice that x = 0.01
gives good results, and similar values of x give similar sets.

• For each document d, we define topTy(d) as the set of query
terms (except stop words) which compose the queries adja-
cent to d in G and being among the fraction y of the most
frequent terms in the query log. We consider y = 0.01, 1.0,
where topT1.0(u) is the dictionary of all query terms (ex-
cept stop words). Again, we select as a feature the cardinal-
ity |topTy(d)|.

Note that topTy(u) is less precise than topQx(u) but it relaxes
the dependence on small variations in the query composition. The
intuition underlying the selection of the above two features is that
the larger their values are, the stronger and wider the query attrac-
tiveness of d should be and thus the more evident should be that d
is a spam page. Clearly, this may induce false positive detection for
good pages dealing with several topics (e.g. a multi-author blog).
However, those pages can be easily detected as non-spam by using
classic link- and/or content-based approaches (see section 4).

3.2 Semantic features
The values of the syntactic features for a document d are not ro-

bust estimators of the semantic coverage of that document which,
in turn, could be a useful measure in order to make the detection
of spam hosts more effective. For instance, cloaked hosts are re-
turned to possibly much different queries (in their semantic). Of
course this property can’t be taken as a discriminant in order to
mark a site as spam, but it represent a good feature to consider in
deploying an automatic classifier (see section 4).

We then propose new measures of semantic coverage of a node
(document or query), based on a novel use of our graphs and of
Web directories, such as the Open Directory DMOZ1. Our approach
consists of two main phases: (i) we first categorize the subset of
documents in VD that can be found in DMOZ, (ii) then, in order
to amplify the DMOZ coverage, we propagate the categories as-
signed to the (few) documents/hosts nodes of G to other docu-
ment/host nodes and query nodes by exploiting the structure and
edge weights of the graph G. At the end, many categories will be
possibly associated with a node of G, denoting the fact that this
node is polysemous, in case of a query node, or multi-topical, in
case of a document/host node. Furthermore, each category will
have associated an assignment strength denoting the relation be-
tween the node content and the category label. This propagation
process is based on [16] and has been implemented in two ways
which are detailed in the next section. Finally, we will deploy this
multi- and weighted-category assignment to derive three disper-
sion measures which will be able to catch the semantic spread of
every (document or query) node in G.

3.2.1 The Category Tree and its computation
Let TL be the category tree underlying the DMOZ directory, pruned

to its top L levels. In our experiments we consider L = 2, thus
managing 577 categories. We assume that every category (node) c
of TL is associated with a string `(c), which denotes the name of
the category. Our goal is to associate one category tree TL(v) with
each vertex v of the graph G (either query or document node), in
such a way that each score scorev(c) attached to the (node) cate-
gory c denotes the strength of the relation between v’s content and
c’s topic. We observe that TL(v) offers a good description of the
semantic coverage of the node v. We then assert that the “wider”
is the distribution of positive scores among the nodes of this tree,
the wider should be the semantic spread of vertex v (being v either
a query or a document).

In order to compute these trees, we associate an initial tree TL(v)
to each node v in G, with all the scores set to zero. Then, we
scan through the document-nodes d of G and check whether d
is assigned to some category c of DMOZ. If so, we increment by
1 the score of c and of all its ancestors in TL(d). Note that,
if c occurs deeper than level L in DMOZ, then we take its an-
cestor at level L, and perform the above updates on this node
(and its ancestors). We normalize all the scores in such a way
that

P

c′∈child(c) scorev(c′) = 1. Doing this we can look at
scorev(c) as the probability that (document/query) node v is about
sub-topic c′, conditioned to the fact that it is about c.

Given the score values scorev(c), we also define score′v(c) =
score′v(π(c))×scorev(c), where π(c) is the parent of c in TL. In
particular, for the category node r at the root of TL(v), we define
score′v(r) = 1 because we assume that category r includes all
possible topics. In some sense score′v(c) captures the probability
of reaching a category-node c of TL, when one starts on the root
of TL and moves downwards according to the scores scorev(c).

1http://www.dmoz.org/

After the initialization step, few category trees are non-null be-
cause DMOZ covers a small portion of the Web (see Table 1). Then
we apply a category propagation processes whose goal is to spread
the category scores to other query and document nodes, driven by
the structure of G and boosted by its edge weights. We propose
two propagation strategies.

Tree-based propagation by weighted average. The first propa-
gation algorithm views the graph G as a network of voters. Their
contributions may sum up over multiple paths, but also decay with
the lengths of those paths. In order to take into account these is-
sues, we propagate the category scores through the graph G by
means of the following process. At the generic step i = 0, . . . , t,
we scan through the nodes v in G and update the scores of all
categories c in TL(v) as follows:

score
i+1
v (c) += αi−1

X

(v′,v)∈E

score
i
v′(c) × f(v′, v)

where score0
v(c) = scorev(c), f is a increasing function set

to log2(1 + w(v′, v)), and α is a damping factor that takes into
account the fact that the relatedness between two nodes at dis-
tance t in G decays with t. In our experiments α has been set to
0.85, as is usual in the PageRank algorithm, and t = 2, which
means that we propagate forth and back the category trees start-
ing from the document nodes of G having the category trees de-
fined directly from DMOZ. Moreover we normalize the scores of
each category tree at each propagation step in order to guarantee
P

c′∈child(c) scorev(c′) = 1.

Propagation by random walk. Our second propagation algo-
rithm flattens the category structure, by considering only the 17
top-level categories in DMOZ. For a fixed category c, the random-
walk approach models the behavior of a random surfer that walks
through the click-graph G and swaps her interests from queries
to documents, and reverse. The way the surfer chooses the next
node among the ones adjacent to the current one (being either
a document or a query) depends on their popularity among the
search-engine users: The transition probability over edge (v, v′) is
proportional to w(v, v′)/

P

z w(v, z) [4], where the weight w(·)
can be defined either in terms of number of clicks or on the num-
ber of distinct search-sessions (we use the first one). The surfer
has no memory of her previous location and sometimes she may
restart (or “teleport” herself) to a document belonging to category
c, chosen among all those documents with probability proportional
to score′v(c). This way we take into account the relatedness of
v’s content with c’s topic. Notice that the restart of the random
walk reaches only document nodes and that, by using the scores
score′v(c) instead of scorev(c), we uncondition on the structure
of the categories in the hierarchy tree. By repeating this calcula-
tion for all categories of DMOZ in the 17 top-level categories, we
get the category trees for all nodes in G as probability distribution
p[v] over all the considered categories. In particular we consider
the normalized version of such vectors: p[v]/||p[v]||1.

3.2.2 Measures of dispersion
We propose three dispersion measures able to catch the semantic

spread of a node by exploiting its category tree. We fix a level i in
TL(v) and consider the conditional entropy

Hi(v) = −
X

level(c)=i−1

p(c)
X

c′∈child(c)

p(c′|c) log2 p(c′|c),

where c ranges among the level-(i − 1) nodes of DMOZ, and

p(c′|c) =
scoreu(c′)

P

x∈child(c) scoreu(x)

Table 1: Statistics on the query graphs.
Document-level Host-level

Cd Ad Vd Ch Ah Vh

Queries 1.59M 0.75M 2.78M 1.59M 0.75M 2.78M
Docs/hosts 2.75M 1.31M 23.47M 0.83M 0.40M 3.08M

Edges 3.69M 1.67M 40.71M 3.50M 1.53M 3.45M
CD(0) 0.05 0.08 0.03 0.28 0.35 0.15
CQ(1) 0.18 0.24 0.39 0.58 0.75 0.92
CD(2) 0.22 0.22 0.45 0.70 0.75 0.94
CCmax 0.32 0.19 0.92 0.80 0.83 0.98
|CC| 0.21 0.23 0.007 0.08 0.06 0.006

is the probability to reach node x given that we are at its par-
ent node c. Therefore, Hi(v) measures the uncertainty of se-
lecting a category at level i given that we are at some category
at level (i − 1). Having fixed the maximum depth of the trees
to L = 2, we define a first measure of dispersion as follows:
H(v) = βH1(v) + (1 − β)H2(v). In this case, if β = 0 then
the distribution among the level-2 categories dominates; if β = 1
then the distribution among the level-1 categories dominates; fi-
nally, if β = 0.5 then H(v) is the half of the joint entropy of the
first two levels of TL(v). Therefore by setting β = 0.75 we give a
preference to the distribution in the level-1 categories.

In a similar way we define the second measure for the semantic
coverage of a node in the graph, called the joint entropy (HJ). Con-
sidering the nodes c on level 2 of TL(v), we compute their joint
probability as p(c) = p(c|parent(c))p(parent(c)). We then ap-
ply the standard entropy function over the resulting probability dis-
tribution obtaining HJ.

As last semantic feature we compute the classic notion of en-
tropy over the vectors p[v] computed in the propagation based on
random walk, where we considered just the 17 top-level categories
of DMOZ. We denote such measure as Hp.

4. APPLICATION TO WEB SPAM
The dataset we used contains queries submitted to the Yahoo!

UK search engine2. We picked a sample of about 1.6 million
queries leading to clicks on about 2.8 million distinct documents.
We also parsed the DMOZ hierarchy, as of October 2007, which
contained about 4.2 million distinct documents in about 600 thou-
sand distinct categories.

In Table 1, the number of query nodes, document (or host) nodes,
and edges is given for all six graphs extracted from the query log.
In the table, CD(k) is the fraction of documents (or hosts) cov-
ered by DMOZ after the k-th propagation step; CQ(k) is the frac-
tion of queries covered by DMOZ after the k-th propagation step;
CCmax is the size of the largest connected component, and |CC|
is the number of connected components, both given as a fraction
of all the nodes in the graph. Starting from this dataset we gen-
erate the graphs Cd, Vd and Ad together with their host-based
version (Ch, Vh and Ah). Over them we generate all the syn-
tactic and semantic features as described in sections 3.1 and 3.2.
We include also some statistical information about our graphs, as
the number of clicks, views, and anti-clicks per query and docu-
ment. We computed these statistics in two versions: discarding
multiple clicks/views/anti-clicks in the same session for the same
query/document pair, or counting them. In total, we have 61 fea-
tures for each node.

Finding Web spam pages. For building and testing our automatic
classifier, we use the hosts occurring in the click-graph Ch and
in the WEBSPAM-UK2006 dataset [2] which comes with a set of
2http://search.yahoo.co.uk/

Figure 1: Distribution of entropy Hp for (non)spam nodes.

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

Entropy

F
re

qu
en

cy

Non−spam
Spam

Table 2: Results for Web spam classifiers.
Feature set Features TP FP F1 AUC
Content (C) 98 75.8% 9.8% 0.692 0.912
Links (L) 139 84.2% 9.5% 0.739 0.939
Usage (U) 61 54.2% 7.4% 0.557 0.872
C ∪ L 237 83.9% 8.6% 0.756 0.952
C ∪ U 159 68.4% 6.6% 0.693 0.917
L ∪ U 200 78.5% 6.5% 0.757 0.951

C ∪ L ∪ U 298 78.9% 6.2% 0.765 0.951

pre-computed content-based and link-based features3. Some of
our usage-based features are very good at separating spam and
normal hosts, as is indicated in Figure 1 where the distributions of
Hp in Ch for spam hosts (lines) and normal hosts (bars) are clearly
different. We then used a cost-sensitive decision tree with bagging
(for an introduction on these techniques see [14]) and adopted the
following performance measures: the true positive rate TP (or re-
call), the false positive rate FP , the F1 metric, which combines
precision P and recall R by F1 = 2 PR

P+R
, and the area under the

ROC curve (AUC), which is the area under the plot of the true
positive rate against the false positive rate. We compare the per-
formance of our 61 usage-based features against the 98 link-based
and the 139 content-based features provided with the dataset. Ta-
ble 2 reports the experimental results, in terms of F1 and AUC.
We notice that, in term of global accuracy, the classifiers (C ∪ L
∪ U), (C ∪ L) and (L ∪ U) are comparable. Nonetheless our (L ∪
U)-classifier has less features than the (C ∪ L)-classifier introduced
in [3] and, remarkably, it does not need to look at the content of
the pages.

Finding queries that attract spam. We refer to a spam-attracting
query as one that has a high number of spam hosts in its result set.
We take the WEBSPAM-UK2006 dataset to obtain spam and nor-
mal labels for a subset of the hosts in Vh, the view-graph at the
host level. All hosts that do not get a label are dropped. Next
we define the spamicity of a query as the number of results la-
beled as spam and shown to the user for that query, over the total
number of results labeled (spam or normal) and shown to the user.
For instance, a spamicity of 0.5 for a query q indicates that from
the labeled hosts present in the result set of q, half of them were
spam. To reduce the noise given by the low coverage of our la-
bels, we consider only the set of queries for which we have at least
10 labeled hosts in the results shown to the user. Next we divide
the queries into two groups: queries having spamicity ≥ 0.5 and
queries having spammicity < 0.5. Using a decision tree for this
task we obtain an AUC of 0.798, true positive rate of 73.7% with
29.0% of false positives. If instead we consider the task of find-

3http://webspam.lip6.fr/

ing queries with spamicity=0 versus queries with spamicity≥ 0.5,
we can obtain an AUC of 0.838 with a true positive rate of 74.0%
and false positive rate of 22.1%. These results suggest that usage
data can be used to automatically extract queries that are likely to
be showing a substantial amount of spam results; however, prob-
ably other features are required to improve the accuracy of such a
detection system.

5. CONCLUSIONS
Our experiments on spam detection have shown interesting per-

formance, which sometimes improved known results, as we can
achieve the same performance as known classifiers with much less
features and considering usage information. We think that detect-
ing spam-attracting queries is particularly interesting because we
might argue for two-lines of defense against Web spam: the clas-
sic automatic classifier built over the collection at indexing time
(and used by all large-scale search engines), and the spam detec-
tion based on observing usage patterns in the search engine’s query
log as we do in this paper. To the best of our knowledge, no usage-
based spam-detection method has been described in the past.

We would like to refine the metrics we have proposed here and
study other potential applications in the future. Studying the indi-
vidual impact of each graph and feature we have introduced in this
paper, is another relevant topic for future work.

Acknowledgements We thank Ricardo Baeza-Yates for com-
ments on the early versions of this work.

6. REFERENCES
[1] R. Baeza-Yates and A. Tiberi. Extracting semantic relations from query logs.

In Procs KDD, 76–85, 2007.
[2] C. Castillo, D. Donato, L. Becchetti, P. Boldi, S. Leonardi, M. Santini, and

S. Vigna. A reference collection for web spam. SIGIR Forum, 40(2):11–24,
2006.

[3] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your
neighbors: Web spam detection using the web topology. In Procs SIGIR,
423–430, 2007.

[4] N. Craswell and M. Szummer. Random walks on the click graph. In Procs
ACM SIGIR, 239–246, 2007.

[5] D. Fetterly. Adversarial information retrieval: The manipulation of web
content. ACM Computing Reviews, July 2007.

[6] Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In Procs AIRWEb,
39–47, 2005.

[7] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting spam web
pages through content analysis. In Procs WWW, 83–92, 2006.

[8] D. Puppin and F. Silvestri. The query-vector document model. In Procs CIKM,
880–881, 2006.

[9] G. Qiu, K. Liu, J. Bu, C. Chen, and Z. Kang. Quantify query ambiguity using
ODP metadata. In Procs ACM SIGIR, 697–698, 2007.

[10] F. Radlinski and T. Joachims. Query chains: learning to rank from implicit
feedback. In Procs ACM SIGKDD, 239–248, 2005.

[11] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. A comparison of implicit and
explicit links for web page classification. In Procs WWW, 643–650, 2006.

[12] R. Song, Z. Luo, J.-R. Wen, Y. Yu, and H.-W. Hon. Identifying ambiguous
queries in web search. In Procs WWW, 1169–1170, 2007.

[13] M. Szummer and T. Jaakkola. Partially labeled classification with markov
random walks. In Advances in Neural Information Processing Systems,
volume 14, 2001.

[14] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, October 1999.

[15] B. Wu and B. D. Davison. Detecting semantic cloaking on the web. In Procs
WWW, 819–828, 2006.

[16] G.-R. Xue, Y. Yu, D. Shen, Q. Yang, H.-J. Zeng, and Z. Chen. Reinforcing
web-object categorization through interrelationships. Data Min. Knowl.
Discov., 12(2-3):229–248, 2006.

[17] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, and W. Fan.
Optimizing web search using web click-through data. In Procs CIKM,
118–126, 2004.

