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ABSTRACT
Web spamming techniques aim to achieve undeserved rankingsin
search results. Research has been widely conducted on identifying
such spam and neutralizing its influence. However, existingspam
detection work only considers current information. We argue that
historical web page information may also be important in spam
classification. In this paper, we use content features from historical
versions of web pages to improve spam classification. We use
supervised learning techniques to combine classifiers based on
current page content with classifiers based on temporal features.
Experiments on the WEBSPAM-UK2007 dataset show that our
approach improves spam classification F-measure performance by
30% compared to a baseline classifier which only considers current
page content.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.5 [Information Storage and Retrieval]: On-
line Information Services—Web based services; I.7.5 [Document
and Text Processing]: Document Capture—Document analysis

General Terms
Algorithms, Experimentation, Measurements

Keywords
search engine spam, spam classification, temporal features,
archival web

1. INTRODUCTION
Web spamming techniques aim to achieve undeserved rankings

in search results. Frequently used techniques include keyword
stuffing, cloaking, link farms, etc. The presence of spam sites in
top results of queries not only degrades the retrieval quality of en-
gines, but also harms other web sites that should be highly ranked.
Therefore, web sites utilizing such techniques should be detected.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AIRWeb’09, April 21, 2009 Madrid, Spain.
Copyright 2009 ACM 978-1-60558-438-6 ...$5.00.

However, it is not an easy task since the spamming techniques
have also improved along with the anti-spam techniques. Andthere
is no method which can entirely detect all kinds of spam pages.
Existing spam detection approaches [5, 8, 10, 11, 15] utilize link
and/or content information to help detect spam pages. However,
most of them only consider current information (i.e., the most re-
cent page content and link graph) without looking at previous ver-
sions of the page.

Both spam pages and normal pages change over time. Although
each page has its own way to evolve, the evolution patterns ofspam
pages and non-spam pages may be differentiated in general, since
the goals of these two kind of pages are likely to be different.

Therefore, we argue that historical information may also beuse-
ful for spam detection. For example, when an authoritative domain
name is sold to a new owner (or registered by another party as soon
as it expires), the incoming hyperlinks may still remain forsome
time. Therefore, even if the quality of the web site has decreased
and its topic changed, it could still be ranked high due to theex-
isting incoming authority flow. Although an ownership transition
does not necessarily make a site spam, this effect is often harnessed
by spammers in order to promote their sites. Although the current
content of a site is often insufficient for a decision about whether
this site is spam, by analyzing historical copies of the domain in
question, we may identify such a transition of ownership, which
indicates the necessity of reassessing the quality of this domain.

In this paper, we propose a new approach to spam classification
that is able to utilize historical information. We extract avariety
of features from archival copies of the web provided by the Inter-
net Archive’s Wayback Machine [12], and use them to train classi-
fiers in conjunction with features extracted from current snapshots.
We achieve a prominent improvement compared to approaches that
only consider current information. In particular, experiments on
the WEBSPAM-UK2007 dataset show that our approach improves
spam classification F-measure performance by 30% compared with
a baseline classifier which only considers current page content.

The contributions of this work include:

• we show that historical information is useful in addition to
current information in spam classification;

• we determine the sensitivity of spam classification perfor-
mance with respect to the time-span of extracted historical
features.

The rest of this paper is organized as follows. In Section 2, we
review related work in spam detection. We motivate our method
in Section 3, and describe it in detail in Section 4. We reportand
analyze experimental results in Section 5 and discuss some issues
in Section 6. The paper concludes with a summary in Section 7.



2. RELATED WORK
Web spam detection has been the focus of many research efforts

(e.g., [8, 11, 15, 18, 21, 22]). Most of the work utilizes the char-
acteristics of link structures or content to differentiatespam from
normal pages or sites. Gyongyi et al. [10] propose a concept called
spam mass and the method to estimate it, and successfully utilize
it for link spamming detection. Wu et al. [23] use trust and distrust
propagation through web links to help demote spam pages in search
results. Andersen et al. [2] detect link spamming by examining the
combination of parent pages which contribute most to the PageR-
ank of a target node. Becchetti et al. [4] study the characteristics of
multiple link-based metrics with respects to spam detection over a
large collection of Web pages. Wu and Davison [22] detect seman-
tic cloaking by comparing the consistency of two copies of a page
retrieved from a browser’s perspective and a crawler’s perspective.

Research on spam detection by content usually utilizes statistics
based on content characteristics. Ntoulas et al. [15] detect spam
pages by building up a classification model which combines multi-
ple heuristics based on page content analysis. Urvoy et al. [19] ex-
tract and compare the HTML similarity measures among pages to
cluster a collection of documents and enhance the Web spam clas-
sification. Attenberg and Suel [3] clean the spam in search results
by capturing pages’ topical structure based on a term-basedsum-
mary data structure. Biro et al. [6] use a modified Latent Dirichlet
allocation method to train a collection of spam and non-spamtopics
respectively, and use them to help classify spam sites.

However, relatively little work about spam detection utilizes his-
torical information. Google [9] filed a patent [1] on using historical
information for scoring and spam detection. Lin et al. [14] show
blog temporal characteristics with respect to whether the target blog
is normal or not. They extract temporal structural properties from
self-similarity matrices across different attributes, and successfully
use them in the 2006 TREC Blog Track. Shen et al. [18] collect a
web graph with two snapshots and use temporal features extracted
from the difference between these two snapshots to demote link
spam under the assumption that link spam tends to result in drastic
changes of links in a short time period. However, they only extract
the temporal features from the variation of web link structures. In
this work, we extract temporal content-based features frommul-
tiple snapshots and train a spam classifier by using the proposed
features within a real world data set.

3. MOTIVATION
Temporal content contains plenty of information, from which we

can extract the trends of site’s variation within a specifiedtime-
span. Such variation reflects how the site’s quality and topic change
over time, which may help classify spam. Consider such a sce-
nario. When a classifier only uses the current snapshot to detect
Web spam, it may judge the target page to be spamming when the
fraction of popular words is found to be high (e.g., as in [15]).
However, it will cause a false positive in some cases since some
pages or sites do show popular content, but are not attempting to
deceive search engines to get higher ranking positions. By combin-
ing the trend of a site’s fraction of popular words within a previous
time interval, we can introduce a new kind of feature for web spam
detection. For example, if a page’s fraction of popular words has a
sudden increase within a short previous time interval, thenwe have
higher confidence to classify it as a spam page, and vice versa.
Hence, features extracted only from the current snapshot cannot
detect the changes and provide such confidence estimation.

A change in the organization that is responsible for the target site
may also be a signal for spam classification. Many spammers buy

expired domains from previously normal sites in order to exploit
the authority of the prior site before search engines realize such ac-
tivities. We conjecture that there is a correlation betweenwhether
the organization changes within a short previous time interval and
whether the target site should be labeled as spam. Our intuition
is that non-spam sites are more likely to be under the administra-
tion of an unchanged organization whereas the ones which become
spam pages are more likely to suffer from the change of owner.
SupposeA is the event that a target site changes its organization in-
formation within the short previous time interval, andB is the event
that it is a spam site now. We conjecture:

P(A|B) > P(A|¬B).

Since we cast Web spam detection as a classification problem,we
care about P(B|A) in particular. Bayes’ theorem defines probability
P(B|A) as:

P(B|A) =
P(A|B) × P(B)

P(A|B) × P(B) + P(A|¬B) × P(¬B)

∝ P(A|B) × P(B)

For each example, we only care about whetherP (B|A) >
P (¬B|A) or not. Since the denominators in calculatingP (B|A)
andP (¬B|A) are the same, we only care about the numerator part.

Thus, we can extracttemporal featuresfrom historical snapshots
of web pages to help classify Web spam since they are potentially
complementary resources for improving spam classification.

4. USING TEMPORAL FEATURES TO DE-
TECT WEB SPAM

Time is a continuous variable whereas the change of Web page
content can be viewed as a stochastic process. Instead of analyz-
ing the temporal series variation directly, we observe the change of
pages by sampling at discrete time points; that is, we take snap-
shots uniformly within our specified time interval. By comparing
the pair-wise differences between consecutive snapshots,we can
ascertain the trends of page changes over time. Groups of features
are extracted to reflect such changes, and used to train separate clas-
sifiers. We then combine the outputs of these classifiers to boost
Web spam classification.

4.1 Temporal Features
Here, we focus on classification of web spam at the site level

based on content. Our temporal features fall into two categories.
The first category contains features aiming to capture the term-level
importance variation over time for each target site. Features in the
second category mainly focus on identifying whether the target site
has changed its organization information during the time ofobser-
vation.

We collect all the historical snapshots for each site homepage
from the Wayback Machine. We uniformly selectN snapshots
(H1, . . . , HN ) for each site, which have an HTTP response code
of 200 (denoting successful retrieval). Our hope is that theselected
snapshots can well represent how the site changes. For each se-
lected snapshot for the target site homepage, we follow its outgo-
ing links and download them individually via the Wayback Ma-
chine. We use all of the downloaded snapshots’ content within the
same site for each selected time point to represent the content of the
whole site at that time. We parse each site’s content and decompose
it into a term list by removing all HTML tags within it and replac-
ing all non-alphanumeric characters with blanks. We treat such a
term list at each time point as avirtual document(i.e.,V1, . . . ,VN ).
Our corpus includes all the virtual documents at 10 time points for



Notation Meaning
N The number of virtual documents for one site

or the number of time points we take
Vj The jth virtual document
tij The weight on the ith term of the jth virtual document.
−→

Tj The term weight vector of the jth virtual document
sij The weight difference on the ith term between the (j+1)th

and the jth virtual documents, i.e.,ti(j+1) − tij
−→

Sj The difference between
−−−→

Tj+1 and
−→

Tj , i.e., (
−−−→

Tj+1 −

−→

Tj )

Table 1: Notation used in temporal feature expression.

all the sites. We remove all stop words1 and then order terms by the
frequency of occurrence in this corpus. The 50,000 most frequent
terms comprise our vocabulary.

The term weights in each virtual document are calculated by
BM25 score [17], which are used to represent the importance for
relevance for each term in each given virtual document. It isdefined
by:

X

t∈Q

w
(k1 + 1)tf(k3 + 1)qtf

(K + tf)(k3 + qtf)
(1)

Since we calculate BM25 score for each term in a specified virtual
document, the query is every term in our vocabulary at one time.
Equation (1) is converted into (for each term):

w
(k1 + 1)tf

K + tf

whereK is given by

k1((1 − b) + b × dl/avdl)

anddl andavdl are document length and average document length
respectively.w is the Robertson/Sparck Jones weight for each term,
which is defined by:

log
(r + 0.5)/(R − r + 0.5)

(n − r + 0.5)/(N − n − R + r + 0.5)

whereN is the total number of virtual documents,n is the number
of virtual documents which contain the specified term,R is the
number of virtual documents relevant to a specific topic, andr is
the number of relevant virtual documents which contain thisterm.
We setR andr to be 0 in calculating BM25 score related temporal
features in this work.

The term weight vector, which is composed of the weights (i.e.,
BM25 scores) on all the terms defined in the vocabulary, represents
the fine-grained topic distribution in every virtual document. By
comparing the term weight vectors among the virtual documents
at different time points, we can discover how the topics of a site
change over time. The notation used in our feature definitionis
listed in Table 1. Our feature groups are described as follows:

• Ave(T)— For each site, Ave(T) calculates the average among
term weight vectors for the virtual documents at all the time
points. This group of features can enhance current content
by providing a simple average historical content. Ave(T) is
defined as:

Ave(T )i =
1

N
×

N
X

j=1

tij

1http://www.lextek.com/manuals/onix/stopwords1.html

• Ave(S)— For each site, Ave(S) calculates the mean differ-
ence between temporally successive virtual term weight vec-
tors. This group of features captures the average variationof
the importance of each term.

Ave(S)i =
1

N − 1
×

N−1
X

j=1

sij

• Dev(T)— For each site, Dev(T) calculates the deviation
among virtual term weight vectors at all time points.This
group of features reflects the variation scope for the impor-
tance of each term in the virtual documents. Dev(T) is de-
fined as:

Dev(T )i =
1

N − 1
×

N
X

j=1

(tij − Ave(T )i)
2

• Dev(S)— For each site, Dev(S) calculates the deviation of
the term weight vector differences of successive virtual doc-
uments. Dev(S) is given by:

Dev(S)i =
1

N − 2
×

N−1
X

j=1

(sij − Ave(S)i)
2

• Decay(T)— For each site, Decay(T) accumulates the term
weight vectors of each virtual document. The term impor-
tance influence reduces exponentially with the time interval
between the time point of each virtual document and that of
the latest one. The base of the exponential function (λ) is the
decay rate. Decay(T) is defined as:

Decay(T )i =
N

X

j=1

λeλ(N−j)(tij)

4.2 Classification of organization change
Finally, in order to know whether a target site has changed its

organization information within the past four years, we train a clas-
sifier, which automatically classifies the ones with changedorgani-
zations.

We randomly selected 20,078 external pages from the intersec-
tion of 2004 and 2005 ODP content, and track whether they are
still in ODP directory [16] by 2007. Among these 20,078 exam-
ples, 53% are removed from ODP directory, whereas 47% are still
retained by 2007. We randomly select examples from removed ex-
ternal pages, and manually label them based on the criteria whether
they changed organization from 2004 to 2007. Sampling without
replacement is used to generate the examples to be labeled. We re-
peat this procedure until we get 100 examples which have changed
organizations. They comprise the positive examples in our ODP
data set. We then randomly select 147 examples from the retained
external pages as our negative examples. Since the pages of sites
having changed organization usually have topic change, they can be
identified by checking the consistency between ODP descriptions
and page content in most cases. Thus, the selected 247 examples
comprise our data set for training and validating our classifier of
checking whether the sites have changed their organizationinfor-
mation.

We download four years (from 2004 to 2007) historical snap-
shots for each selected external page from the Wayback Machine.
We select nine successfully retrieved snapshots for each selected
external page uniformly in order to represent how the page con-
tent changes within these four years. We extract several groups of



Content-based feature groups
• features based on title information
• features based on meta information
• features based on content
• features based on time measures
• features based on organization which is responsible for

the external page
• features based on global bi-gram and tri-gram lists

Category-based feature groups
• features based on category

Link-based feature groups
• features based on outgoing links and anchor text
• features based on links in framesets

Table 2: The feature groups (Organization historical features)
used in classifying whether site ownership has changed within
the past four years.

historical features from the snapshots of each external page. Most
of these features reflect the contrast between two snapshots. Ta-
ble 2 shows the main feature groups (i.e., organization historical
features) which are used. We use SVMlight [13] to train and val-
idate our classifier, and then directly classify the site homepages
selected in our spam detection data set (see Section 5.1 for ade-
tailed description). Thus, the outputs (predictions) given by our
trained classification model directly reflect the confidencethat the
target sites (test examples) have changed their organizations within
four years. In total we generate 1270 features extracted from all the
snapshots of each page.

4.3 Web Spam Classification
We use a two-level classification architecture to combine the re-

sults from separate classifiers, each trained on only one group of
features. Figure 1 renders the overall architecture. A series of SVM
(SVMlight implementation) classifiers using linear kernels com-
prise the low-level portion of the classification architecture. Each
low-level SVM classifier is trained using one group of temporal
features we introduced in Section 4.1. Here, since the output of
SVMlight can reflect the distance of each test example to the de-
cision boundary, representing the confidence of decisions,we di-
rectly use SVM for the low-level classifiers. The high-levelclassi-
fier we used is a logistic regression classifier implemented in Weka
3.5.8 [20]. It uses the output values (predictions) given bylow-level
SVM classifiers as its input feature values, and combines them us-
ing logistic regression.

5. EXPERIMENTS
In this section, we present the experimental results. We first

show the sensitivity of each group of temporal features withrespect
to the Web spam classification. We then report the performance
by combining the outputs (predictions) generated by multiple low-
level classifiers.

5.1 Data Set
We use the WEBSPAM-UK2007 data set to test our Web spam

classification approach. 6479 sites are labeled by volunteers, in
which about 6% are labeled as spam sites. We select the 3926 sites
whose complete historical snapshots can be retrieved from Way-
back Machine as our data set, in which 201 sites (5.12%) are la-
beled as spam, the rest as normal sites. For term-based temporal
feature extraction, we download 10 snapshots covering from2005
to 2007 for each site’s homepage and corresponding up to 400 out-
going pages from Internet Archive. We use all the content of down-
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Figure 1: Two-level classification architecture.

loaded pages within the same site to represent the site content. For
organization historical feature extraction, we only use the content
of site homepages and extract features from it since the examples in
our training set (ODP external pages) are also based on page level.

Following a previous work [7], we set the parametersk1 = 4.2
andb = 0.8 in BM25 calculation.

5.2 Metric
Precision, recall and F-measure are used to measure our spam

classification performance.

• Precision: the percentage of truly positive examples (spam
sites) in those labeled as spam by the classifier;

• Recall: the percentage of correctly labeled positive examples
(spam sites) out of all positive examples;

• F-measure: a balance betweenPrecisionandRecall, which
is defined as:

F_measure=
2 · (Precision× Recall)

Precision+ Recall

We also use true positive (tp), false positive (fp), true negative (tn),
and false negative (fn) (defined in Table 3) to represent the distri-
bution of classifications in a confusion matrix.

5.3 Low-level Classification
Here, we first present the features’ sensitivity with respect to

time-span, and then show the spam classification performance of
all low-level classifiers.

Recall that we extract 10 snapshots for each page covering 2004
to 2007. We vary the time-span we look backwards (i.e., the num-
ber of snapshots) when calculating feature vectors in orderto show
how each low-level classifier benefits from the historical informa-
tion. All low-level classifiers, except the one for detecting organi-
zation variation, are examined based on five-fold cross-validation.

Notation Meaning
tp number of positive examples classified as spam
tn number of negative examples classified as non-spam
fp number of negative examples classified as spam
fn number of positive examples classified as non-spam

Table 3: Base evaluation metrics.



1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
F

−m
ea

su
re

#. of snapshots

Ave(S)
Ave(T)
Dev(S)
Dev(T)

Figure 2: Features’ sensitivity on F-measure performance with
respected to time-span.

Since the number of positive examples is small, we use oversam-
pling to emphasize positive examples; i.e., positive examples are
replicated 10 times so that the ratio of positive to negativeexam-
ples in training set is about 1/2.

Figure 2 shows the trends about F-measure spam classification
performance with respect to the number of snapshots. The clas-
sifier trained by Ave(T) has the best performance in most cases.
Its F-measure increases first, but gradually falls when the number
of used snapshots is greater than 4. Ave(S) keeps benefiting from
the extended time-span until the number of snapshots reaches 9.
Dev(S) and Dev(T) have similar trends, but both of them achieve
unstable benefits with the extension of time-span. Figure 3 shows
the sensitivity of Decay(T)’s F-measure performance with respect
to decay rate and time-span. As we expected, the F-measure is
more sensitive to the time-span when the decay rate is small,and
becomes less sensitive with the increase in decay rate, as itde-
emphasizes the influence of the earlier snapshots. The best perfor-
mance is 0.434, which is achieved when decay rate is 0.05 and the
number of snapshots is 4.

Recall that we use selected ODP external pages to train and val-
idate as SVM classifier for detecting whether the target sitehas
changed its organization from 2004 to 2007 (see Section 4.1 for
a detailed description). We first perform five-fold cross-validation
based on this data set. Precision, recall and F-measure are 0.825,
0.810 and 0.818, respectively. Since both precision and recall are
above 80%, we directly apply this classifier on the spam data set
and assume that it still can give relatively accurate labels. Accord-
ing to our classifier, 37.31% spam sites have changed their organi-
zations while this figure is lower (14.8%) for non-spam sites.

Our baseline is the SVM classifier (SVMlight implementation)
trained using the BM25 score feature vectors provided2 for the cur-
rent snapshot. We parsed all documents and represent the content
of selected sites by concatenating the terms of all pages within the
same site together. After removing stop words, the top 22,000 fre-
quent words are chosen as feature words.

The performance comparison among low-level classifiers is pre-
sented in Table 4. Here, the performance is based on 10 snapshots
by default rather than the best performance by tuning the number
of snapshots. We set the decay rate of Decay(T) to be 0.95, hoping

2http://www.yr-bcn.es/webspam/datasets/uk2007/contents/
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Figure 3: Feature Decay(T)’s sensitivity on F-measure perfor-
mance with respect to time-span and decay rate.

that its feature values can be much different from those of Ave(T).
We find that Decay(T) has the highest F-measure performance,
followed by BM25, Dev(T), and Ave(T). ORG has the lowest F-
measure performance, but the highest recall. As we showed before,
although spam sites have a higher probability of having changed
their ownership, a portion of normal sites also changed.

5.4 High-level Combination
We use logistic regression to combine the scores generated by

each low-level SVM classifier. The low-level classifiers aretrained
using all ten snapshots; our goal is to ascertain whether Webspam
classification can benefit from using temporal features, rather than
finding the best performance by tuning this parameter for a spe-
cific data set. The decay rate used in Decay(T) is set to be 0.95
since we hope this group of features can have much difference
from Ave(T). The combination performance is shown in Table 5.
All the performance combined by one lower-level classifier and
the baseline shows 7.2%–28.7% improvement on F-measure. The
best F-measure is 0.527, which outperforms the baseline by more
than 30% when combined with Dev(S), Dev(T), and ORG features.
Higher recall is usually the reason for high F-measure, since pre-
cision performance is much higher in all cases. We also notice
that F-measure performance has an overall slight decrease when
the number of combined low-level classifiers is greater than4.

6. DISCUSSION AND FUTURE WORK
In this section, we discuss a few issues, including the impact of

using historical information to detect spam pages, some caveats in
this work and potential future work.

Prec. Rec. F-meas. tp fn fp tn
BM25 0.674 0.289 0.404 58 143 28 3697

Dev(S) 0.530 0.214 0.304 43 158 38 3687
Dev(T) 0.529 0.274 0.361 55 146 49 3676
Ave(S) 0.744 0.144 0.242 29 172 10 3715
Ave(T) 0.573 0.234 0.332 47 154 35 3690

Decay(T) 0.656 0.303 0.415 61 140 32 3693
ORG 0.120 0.373 0.181 75 126 552 3173

Table 4: Performance of low-level classifiers when using ten
snapshots.



Combination Precision Recall F-measure tp fn fp tn
BM(baseline) 0.674 0.289 0.404 58 143 28 3697

BM+Dev(S) 0.560 0.418 0.479 84 117 66 3659
BM+Dev(T) 0.675 0.423 0.520 85 116 41 3684
BM+Ave(S) 0.602 0.338 0.433 68 133 45 3680
BM+Ave(T) 0.636 0.348 0.450 70 131 40 3685

BM+Decay(T) 0.664 0.373 0.478 75 126 38 3687
BM+ORG 0.640 0.353 0.455 71 130 40 3685

BM+Dev(S)+Dev(T) 0.635 0.433 0.515 87 114 50 3675
BM+Dev(S)+Ave(S) 0.602 0.353 0.445 71 130 47 3678
BM+Dev(S)+Ave(T) 0.645 0.398 0.492 80 121 44 3681

BM+Dev(S)+Decay(T) 0.621 0.408 0.492 82 119 50 3675
BM+Dev(S)+ORG 0.579 0.418 0.486 84 117 61 3664

BM+Dev(T)+Ave(S) 0.600 0.343 0.437 69 132 46 3679
BM+Dev(T)+Ave(T) 0.694 0.373 0.485 75 126 33 3692

BM+Dev(T)+Decay(T) 0.664 0.403 0.502 81 120 41 3684
BM+Dev(T)+ORG 0.689 0.418 0.520 84 117 38 3687

BM+Ave(S)+Ave(T) 0.585 0.343 0.433 69 132 49 3676
BM+Ave(S)+Decay(T) 0.568 0.353 0.436 71 130 54 3671

BM+Ave(S)+ORG 0.619 0.348 0.446 70 131 43 3682
BM+Ave(T)+Decay(T) 0.667 0.358 0.466 72 129 36 3689

BM+Ave(T)+ORG 0.726 0.343 0.466 69 132 26 3699
BM+Decay(T)+ORG 0.721 0.373 0.492 75 126 29 3696

BM+Dev(S)+Dev(T)+Ave(S) 0.559 0.353 0.433 71 130 56 3669
BM+Dev(S)+Dev(T)+Ave(T) 0.609 0.403 0.485 81 120 52 3673
BM+Dev(S)+Dev(T)+Decay 0.618 0.403 0.488 81 120 50 3675
BM+Dev(S)+Dev(T)+ORG 0.650 0.443 0.527 89 112 48 3677

BM+Dev(S)+Ave(S)+Ave(T) 0.578 0.333 0.423 67 134 49 3676
BM+Dev(S)+Ave(S)+Decay(T) 0.580 0.378 0.458 76 125 55 3670

BM+Dev(S)+Ave(S)+ORG 0.608 0.363 0.455 73 128 47 3678
BM+Dev(S)+Ave(T)+Decay(T) 0.658 0.393 0.492 79 122 41 3684

BM+Dev(S)+Ave(T)+ORG 0.650 0.378 0.478 76 125 41 3684
BM+Dev(S)+Decay(T)+ORG 0.656 0.408 0.503 82 119 43 3682
BM+Dev(T)+Ave(S)+Ave(T) 0.568 0.313 0.404 63 138 48 3677

BM+Dev(T)+Ave(S)+Decay(T) 0.571 0.358 0.440 72 129 54 3671
BM+Dev(T)+Ave(S)+ORG 0.617 0.353 0.449 71 130 44 3681

BM+Dev(T)+Ave(T)+Decay(T) 0.685 0.378 0.487 76 125 35 3690
BM+Dev(T)+Ave(T)+ORG 0.699 0.358 0.474 72 129 31 3694

BM+Dev(T)+Decay(T)+ORG 0.699 0.393 0.503 79 122 34 3691
BM+Ave(S)+Ave(T)+Decay(T) 0.579 0.363 0.446 73 128 53 3672

BM+Ave(S)+Ave(T)+ORG 0.588 0.333 0.425 67 134 47 3678
BM+Ave(S)+Decay(T)+ORG 0.559 0.353 0.433 71 130 56 3669
BM+Ave(T)+Decay(T)+ORG 0.680 0.348 0.461 70 131 33 3692

BM+Dev(S)+Dev(T)+Ave(S)+Ave(T) 0.544 0.338 0.417 68 133 57 3668
BM+Dev(S)+Dev(T)+Ave(S)+Decay(T) 0.533 0.363 0.432 73 128 64 3661

BM+Dev(S)+Dev(T)+Ave(S)+ORG 0.566 0.363 0.442 73 128 56 3669
BM+Dev(S)+Dev(T)+Ave(T)+Decay(T) 0.642 0.393 0.488 79 122 44 3681

BM+Dev(S)+Dev(T)+Ave(T)+ORG 0.642 0.383 0.480 77 124 43 3682
BM+Dev(S)+Dev(T)+Decay(T)+ORG 0.667 0.398 0.498 80 121 40 3685

BM+Dev(S)+Ave(S)+Ave(T)+Decay(T) 0.567 0.358 0.439 72 129 55 3670
BM+Dev(S)+Ave(T)+Decay(T)+ORG 0.679 0.378 0.486 76 125 36 3689

BM+Dev(T)+Ave(S)+Ave(T)+Decay(T) 0.534 0.308 0.391 62 139 54 3671
BM+Dev(T)+Ave(T)+Decay(T)+ORG 0.714 0.373 0.490 75 126 30 3695
BM+Ave(S)+Ave(T)+Decay(T)+ORG 0.567 0.358 0.439 72 129 55 3670

BM+Dev(S)+Dev(T)+Ave(S)+Ave(T)+Decay(T) 0.507 0.338 0.406 68 133 66 3659
BM+Dev(S)+Dev(T)+Ave(S)+Ave(T)+ORG 0.541 0.328 0.409 66 135 56 3669

BM+Dev(S)+Dev(T)+Ave(S)+Decay(T)+ORG 0.522 0.353 0.421 71 130 65 3660
BM+Dev(S)+Dev(T)+Ave(T)+Decay(T)+ORG 0.648 0.393 0.489 79 122 43 3682
BM+Dev(S)+Ave(S)+Ave(T)+Decay(T)+ORG 0.565 0.348 0.431 70 131 54 3671
BM+Dev(T)+Ave(S)+Ave(T)+Decay(T)+ORG 0.549 0.308 0.395 62 139 51 3674

BM+Dev(S)+Dev(T)+Ave(S)+Ave(T)+Decay(T)+ORG 0.539 0.343 0.419 69 132 59 3666

Table 5: Combined performance.



6.1 Impact
Page historical information provides a valuable complementary

resource to help classify Web spam since spam pages and normal
pages show different patterns of evolution. The idea and thefea-
tures that we use can be generalized to a variety of other appli-
cations. For example, the anchor text on the links which point to
target pages are often not updated promptly since the content and
topics of target pages change over time without notifying the links
pointing to them. By tracking how target pages evolve, we canau-
tomatically identify whether the anchor text has become stale or
not, which may also be helpful on detecting hacked sites and/or
paid links. Further, we can infer pages’ freshness which mayin-
fluence the authority scores pages should be given, and therefore,
potentially influence link-based authority calculation. In addition,
document classification algorithms which utilize information from
neighbor nodes may also benefit from this idea since a neighbor
referenced by a stale link should have a lowered contribution to the
content representation of the target page.

In this work, we track the evolution patterns mainly based on
documents’ term-level content representation, and use them as
signals for the page/site quality measurement (i.e., determining
whether the site is a spam site). From the experiments, we notice
that most of combined performance have high precision (around
0.7). Therefore, we infer that these trained classificationmodels
can be potentially used in the post-processing of search results to
filter the spam pages that would otherwise appear in the returned
search results.

6.2 Caveats
Although we have shown that temporal features extracted from

historical snapshots are useful in classification of web spam, our
proposed method may suffer from the following limitations.

• The manual judgement regarding whether the target page has
changed ownership is only based on the organization infor-
mation shown on the page and whether the page has changed
its topics dramatically if the ownership information is ab-
sent. However, accurate page ownership information should
be confirmed by historical WHOIS registration data. We ex-
pect that the classification model (ORG) would be more ac-
curate if WHOIS data were included.

• We mainly focus on the evolution patterns of BM25 scores
which are based on term vector space features, and whether
the sites change their organizational ownership within the
past four years. Many other features which reflect page con-
tent variation can be considered, such as topic change and so
on. The term-level features only reflect the finest granularity
with respect to document topics.

• Term-based features are too sensitive to the terms selected
from the vocabulary, which might limit the generalization to
some extent.

While we show the classification performance (F-measure) has
prominent improvement when combining temporal features with
the baseline, the absolute performance is not very high. We sum-
marize the main reasons as follows:

• We assume that the classifier for identifying sites which have
changed organizational ownership within the past four years
can correctly classify the sites in the WEBSPAM-UK2007
dataset since the classification performance on ODP datasets
is high (both precision and recall are above 0.8 based on five-
fold cross-validation). However, the misclassified data points
do introduce noise into the Web spam classification.

• The examples we select are the ones for which the Internet
Archive can provide complete historical snapshots (at least
for each site’s home page) from 2004 to 2007. Therefore,
the ratio of spam sites (around 5%) is lower than that in the
whole WEBSPAM-UK2007 dataset (around 6%). This se-
lection of examples may influence the classification perfor-
mance.

• We use a site’s homepage along with up to 400 first-level
site subdirectory pages to represent a web site. However, the
subdirectory pages may not have consistent snapshots (i.e.,
some subdirectory pages only have historical snapshots in
2004, but not in 2006), which influences the classification
performance.

• SVM classifiers prefer the majority class and aim to maxi-
mize the accuracy metric, which is given by:

accuracy=
the number of correctly classified examples

the total number of examples

We did not tune the cost factor but directly copied positive
examples ten times such that the ratio of positive to negative
examples is 1/2.

6.3 Future work
Tuning the number of snapshots in classification models.The

combined performance presented in this work is only based onthe
features extracted from 10 snapshots. We can mix the procedure of
tuning the best number of snapshots we should use into training
this two-level classification architecture, which may further im-
prove performance. Besides, it is also helpful to investigate the
sensitivity of spam classification performance with respect to the
time-span in which pages change organizations.

Examining alternative classifiers. In this work, we use SVMs
to train our low-level classification models. In the future,we might
generalize it onto other classification models, such as decision
trees, etc., and investigate the time-related sensitivity(the varia-
tion of the number of snapshots used) with respect to Web spam
classification performance.

Combining other temporal features.Most of the features pro-
posed in this work are based on content. Given enough temporal
link information, we can extract similar temporal featuresthrough
the variation of link information for each site, which may bemore
generalizable for the spam classification task. In the future, we plan
to extract link-based and/or other temporal features, and compare
the performance with classifiers trained using the current content-
based temporal features. For example, the features extracted from
the variation of anchor text within pages and the in-links and out-
links may contain plenty of useful signals on both page quality
change and organization change3. It may be also valuable to in-
vestigate the influence of changes in nameservers, WHOIS infor-
mation, and site ages on page quality analysis. In the future, we
will combine the temporal content features and other temporal fea-
tures together to test how much these features can boost the Web
spam classification performance. Besides, we will examine the in-
correctly classified examples, analyze the reasons, and summarize
the discovered error types. We also plan to investigate how much
overlap these feature groups have with those that are usefulfor Web
spam classification.

3It is noted that some page-level temporal link features are only
used in the ORG classifier.



7. SUMMARY
Spam pages and normal pages have different evolution patterns

with respect to page content and links. In this work, we show
that historical information can be a useful complementary resource
for Web spam classification. We introduce several groups of tem-
poral features mainly based on historical content variation, and
demonstrate their capability for spam detection in the WEBSPAM-
UK2007 data set. The best F-measure performance of combining
multiple classifiers trained using different groups of features out-
performs our textual baseline (the BM25 score vectors calculated
using current site content) by 30%.
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