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ABSTRACT However, it is not an easy task since the spamming techniques
have also improved along with the anti-spam techniques. tAeck

is no method which can entirely detect all kinds of spam pages
Existing spam detection approaches [5, 8, 10, 11, 15] atilizk
and/or content information to help detect spam pages. Hexvev
most of them only consider current information (i.e., thestne-

cent page content and link graph) without looking at presiger-
sions of the page.

Web spamming techniques aim to achieve undeserved rankings
search results. Research has been widely conducted oifydent
such spam and neutralizing its influence. However, existjpgm
detection work only considers current information. We a&rgfat
historical web page information may also be important innspa
classification. In this paper, we use content features friztofical
versions of web pages to improve spam classification. We use .
supervised learning techniques to combine classifiersdbase Both spam pages and normal pages change_over time. Although
current page content with classifiers based on temporalifest each page has its own way to evolve, the e"o"!t"’” pattersparh
Experiments on the WEBSPAM-UK2007 dataset show that our pages and non-spam pages may be dlffgrenUated m_genﬂmé, s
approach improves spam classification F-measure perfaenay the goals of these two kind of pages are likely to be different

30% compared to a baseline classifier which only considerscu Therefore, we argue that historical information may a[suni;ge
page content. ful for spam detection. For example, when an authoritativeain

name is sold to a new owner (or registered by another party@s s
as it expires), the incoming hyperlinks may still remain gmme
time. Therefore, even if the quality of the web site has deseed

Categories and SUbJeCt Descriptors and its topic changed, it could still be ranked high due toeke

H.3.3 [Information Storage and Retrieval]: Information Search isting incoming authority flow. Although an ownership triimn
and Retrieval; H.3.5Ipformation Storage and Retrieval]: On- does not necessarily make a site spam, this effect is ofteressed
line Information Services-Web based servicet7.5 [Document by spammers in order to promote their sites. Although theecur
and Text Processingg Document Capture-Bocument analysis content of a site is often insufficient for a decision abouttkier
this site is spam, by analyzing historical copies of the danma
General Terms question, we may identify such a transition of ownershipjcivh

indicates the necessity of reassessing the quality of thisaih.

In this paper, we propose a new approach to spam classificatio
that is able to utilize historical information. We extracvariety
Keywords of features from archival copies of the web provided by thern
search engine spam, spam classification, temporal features net Archive’s Wayback Machine [12], and use them to traissila
archival web fiers in conjunction with features extracted from curreragshots.

We achieve a prominent improvement compared to approabhés t
only consider current information. In particular, expegnts on
1. INTRODUCTION the WEBSPAM-UK2007 dataset show that our approach improves
spam classification F-measure performance by 30% compatkd w
a baseline classifier which only considers current pageecnt
The contributions of this work include:

Algorithms, Experimentation, Measurements

Web spamming techniques aim to achieve undeserved rankings
in search results. Frequently used techniques include dw/w
stuffing, cloaking, link farms, etc. The presence of sparssih
top results of queries not only degrades the retrieval guafien-
gines, but also harms other web sites that should be highkedca
Therefore, web sites utilizing such techniques should beatied.

e we show that historical information is useful in addition to
current information in spam classification;

e we determine the sensitivity of spam classification perfor-
mance with respect to the time-span of extracted historical
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2. RELATED WORK

expired domains from previously normal sites in order toleitp

Web spam detection has been the focus of many researcrseffort the authority of the prior site before search engines realizch ac-

(e.g., [8, 11, 15, 18, 21, 22]). Most of the work utilizes theac
acteristics of link structures or content to differentiafgam from
normal pages or sites. Gyongyi et al. [10] propose a concletct
spam mass and the method to estimate it, and successflihe uti
it for link spamming detection. Wu et al. [23] use trust anstulist
propagation through web links to help demote spam pagesmise
results. Andersen et al. [2] detect link spamming by exangjrihe
combination of parent pages which contribute most to theeRag
ank of a target node. Becchetti et al. [4] study the charsties of
multiple link-based metrics with respects to spam detaabieer a
large collection of Web pages. Wu and Davison [22] detectesem
tic cloaking by comparing the consistency of two copies obge
retrieved from a browser’s perspective and a crawler'sgestve.

Research on spam detection by content usually utilizeisttat
based on content characteristics. Ntoulas et al. [15] tetgmm
pages by building up a classification model which combinekimu
ple heuristics based on page content analysis. Urvoy et @]l ex-
tract and compare the HTML similarity measures among pages t
cluster a collection of documents and enhance the Web s cl
sification. Attenberg and Suel [3] clean the spam in searshlt®
by capturing pages’ topical structure based on a term-based
mary data structure. Biro et al. [6] use a modified Latentdhilet
allocation method to train a collection of spam and non-sfzgits
respectively, and use them to help classify spam sites.

However, relatively little work about spam detection s his-
torical information. Google [9] filed a patent [1] on usingturical
information for scoring and spam detection. Lin et al. [14bw
blog temporal characteristics with respect to whetherahget blog
is normal or not. They extract temporal structural progesrtirom
self-similarity matrices across different attributesgauccessfully
use them in the 2006 TREC Blog Track. Shen et al. [18] collect a
web graph with two snapshots and use temporal featurescéedra
from the difference between these two snapshots to dente li
spam under the assumption that link spam tends to resulastidr
changes of links in a short time period. However, they onlyast
the temporal features from the variation of web link struetu In
this work, we extract temporal content-based features fronh
tiple snapshots and train a spam classifier by using the pezpo
features within a real world data set.

3. MOTIVATION

Temporal content contains plenty of information, from whige
can extract the trends of site’s variation within a specifiiece-
span. Such variation reflects how the site’s quality andctopange

over time, which may help classify spam. Consider such a sce-

nario. When a classifier only uses the current snapshot tctet

tivities. We conjecture that there is a correlation betwetether

the organization changes within a short previous time vateaind
whether the target site should be labeled as spam. Ouriontuit

is that non-spam sites are more likely to be under the adtraris
tion of an unchanged organization whereas the ones whiamntec
spam pages are more likely to suffer from the change of owner.
Supposé\ is the event that a target site changes its organization in-
formation within the short previous time interval, aBdks the event
that it is a spam site now. We conjecture:

P(A|B) > P(A|-B).

Since we cast Web spam detection as a classification problem,
care about P(B\) in particular. Bayes’ theorem defines probability
P(BJA) as:

P(A|B) x P(B)
P(A|B) x P(B) + P(A|-B) x P(—~B)
x P(A|B) x P(B)

For each example, we only care about whetliefB|A) >

P(—B|A) or not. Since the denominators in calculatiRgB|A)

andP(—BJA) are the same, we only care about the numerator part.
Thus, we can extracemporal featurefrom historical snapshots

of web pages to help classify Web spam since they are pofigntia

complementary resources for improving spam classification

P(B|A4)

4. USING TEMPORAL FEATURES TO DE-
TECT WEB SPAM

Time is a continuous variable whereas the change of Web page
content can be viewed as a stochastic process. Instead lgzana
ing the temporal series variation directly, we observe thenge of
pages by sampling at discrete time points; that is, we tak@-sn
shots uniformly within our specified time interval. By conniog
the pair-wise differences between consecutive snapshats;an
ascertain the trends of page changes over time. Groups tofésa
are extracted to reflect such changes, and used to trairesejoéas-
sifiers. We then combine the outputs of these classifiers ¢stbo
Web spam classification.

4.1 Temporal Features

Here, we focus on classification of web spam at the site level
based on content. Our temporal features fall into two catego
The first category contains features aiming to capture time-tevel
importance variation over time for each target site. Festum the
second category mainly focus on identifying whether thgdtsite
has changed its organization information during the timelsfer-
vation.

Web spam, it may judge the target page to be spamming when the We collect all the historical snapshots for each site homgepa

fraction of popular words is found to be high (e.g., as in }15]
However, it will cause a false positive in some cases sinceeso
pages or sites do show popular content, but are not atteghfuin
deceive search engines to get higher ranking positions oBbin-
ing the trend of a site’s fraction of popular words within @ypus
time interval, we can introduce a new kind of feature for wphma
detection. For example, if a page’s fraction of popular vednds a
sudden increase within a short previous time interval, therave

from the Wayback Machine. We uniformly seledt snapshots
(Hi, ..., Hy) for each site, which have an HTTP response code
of 200 (denoting successful retrieval). Our hope is thastiected
snapshots can well represent how the site changes. For each s
lected snapshot for the target site homepage, we followuitgm

ing links and download them individually via the Wayback Ma-
chine. We use all of the downloaded snapshots’ content mvitie
same site for each selected time point to represent thertftthe

higher confidence to classify it as a spam page, and vice .versa whole site at that time. We parse each site’s content anchaease

Hence, features extracted only from the current snapshatata
detect the changes and provide such confidence estimation.

A change in the organization that is responsible for thegtesije
may also be a signal for spam classification. Many spammesrs bu

it into a term list by removing all HTML tags within it and rega-
ing all non-alphanumeric characters with blanks. We treahsa
term list at each time point asvartual documenti.e., Vi, ..., Vn).
Our corpus includes all the virtual documents at 10 time {sdfior



Notation Meaning

N The number of virtual documents for one site
or the number of time points we take
V; The " virtual document
ti; The weight on thet* term of the " virtual document.
1_“; The term weight vector of thé’} virtual document
8ij The weight difference on thé'i term between the (j+1¥
and the j* virtual documents, i.€t(j41) — tij
- . —— — —— —
S, The difference betweef; , andTy, i.e., (41 — T})

Table 1: Notation used in temporal feature expression.

all the sites. We remove all stop wotdand then order terms by the
frequency of occurrence in this corpus. The 50,000 mosugat|
terms comprise our vocabulary.

The term weights in each virtual document are calculated by
BM25 score [17], which are used to represent the importance f
relevance for each term in each given virtual document.defined
by:

(k1 + 1)t f (ks + 1)qtf
(K +tf)(ks + qtf)

Su
teQ
Since we calculate BM25 score for each term in a specifiedalirt
document, the query is every term in our vocabulary at one.tim
Equation (1) is converted into (for each term):
(kv +1)tf

K+if

@)

whereK is given by
Ei((1 —b) + b x dl/avdl)

anddl andavdl are document length and average document length
respectivelyw is the Robertson/Sparck Jones weight for each term,
which is defined by:

(r+0.5)/(R—r+0.5)
n—r+05)/(N—-n—R+r+0.5)

log
(

whereN is the total number of virtual documentsjs the number
of virtual documents which contain the specified terRhjs the
number of virtual documents relevant to a specific topic, ansl
the number of relevant virtual documents which contain téi.
We setR andr to be 0 in calculating BM25 score related temporal
features in this work.

The term weight vector, which is composed of the weights,(i.e
BM25 scores) on all the terms defined in the vocabulary, smes
the fine-grained topic distribution in every virtual docume By
comparing the term weight vectors among the virtual documen
at different time points, we can discover how the topics ofta s
change over time. The notation used in our feature definison
listed in Table 1. Our feature groups are described as fallow

e Ave(S)— For each site, Ave(S) calculates the mean differ-
ence between temporally successive virtual term weight vec
tors. This group of features captures the average variafion
the importance of each term.

Ave(S); =

N-1

e Dev(T)— For each site, Dev(T) calculates the deviation
among virtual term weight vectors at all time points.This
group of features reflects the variation scope for the impor-
tance of each term in the virtual documents. Dev(T) is de-
fined as:

1
N -1

X (ti]‘ — Ave(T)i)Q

M=

Dev(T); =

.
Il
=

e Dev(S)— For each site, Dev(S) calculates the deviation of
the term weight vector differences of successive virtua-do
uments. Dev(S) is given by:

1
N -2

Dev(S); = (sij — Ave(S):)”

j=1

e Decay(T)— For each site, Decay(T) accumulates the term
weight vectors of each virtual document. The term impor-
tance influence reduces exponentially with the time interva
between the time point of each virtual document and that of
the latest one. The base of the exponential functignqthe
decay rate Decay(T) is defined as:

N
Decay(T); = Z AN =9 (4,0
j=1

4.2 Classification of organization change

Finally, in order to know whether a target site has changed it
organization information within the past four years, wertraclas-
sifier, which automatically classifies the ones with changggni-
zations.

We randomly selected 20,078 external pages from the irderse
tion of 2004 and 2005 ODP content, and track whether they are
still in ODP directory [16] by 2007. Among these 20,078 exam-
ples, 53% are removed from ODP directory, whereas 47% dte sti
retained by 2007. We randomly select examples from remoxed e
ternal pages, and manually label them based on the critéesher
they changed organization from 2004 to 2007. Sampling witho
replacement is used to generate the examples to be labetede-W
peat this procedure until we get 100 examples which haveggthn
organizations. They comprise the positive examples in dDPO
data set. We then randomly select 147 examples from thenestai
external pages as our negative examples. Since the pagassof s
having changed organization usually have topic changg die be

* Ave(T)— For each site, Ave(T) calculates the average among gentified by checking the consistency between ODP degamipt
term weight vectors for the virtual documents at all the time  gpq page content in most cases. Thus, the selected 247 esampl
points. This group of features can enhance current content comprise our data set for training and validating our chessof
by providing a simple average historical content. Ave(T) is checking whether the sites have changed their organization-
defined as: mation.

We download four years (from 2004 to 2007) historical snap-
shots for each selected external page from the Wayback Mechi
We select nine successfully retrieved snapshots for edelted
external page uniformly in order to represent how the page co
tent changes within these four years. We extract severalpgrof

1 N
AU@(T)i = N X Ztu
j=1

http://www.lextek.com/manuals/onix/stopwords1.html



Content-based feature groups
features based on title information
features based on meta information
features based on content
features based on time measures
features based on organization which is responsible
the external page
e features based on global bi-gram and tri-gram lists

for

Category-based feature groups
e features based on category

Link-based feature groups
e features based on outgoing links and anchor text
e features based on links in framesets

Table 2: The feature groups (Organization historical featues)
used in classifying whether site ownership has changed witn
the past four years.

historical features from the snapshots of each externa pktpst
of these features reflect the contrast between two snapsfiats
ble 2 shows the main feature groups (i.e., organizatiorohcst!
features) which are used. We use S¥M® [13] to train and val-
idate our classifier, and then directly classify the site Bpages
selected in our spam detection data set (see Section 5.1der a
tailed description). Thus, the outputs (predictions) giv®y our
trained classification model directly reflect the confidetiwt the
target sites (test examples) have changed their orgamizatvithin
four years. In total we generate 1270 features extracted &lbthe
shapshots of each page.

4.3 Web Spam Classification

We use a two-level classification architecture to combireréh
sults from separate classifiers, each trained on only onepgod
features. Figure 1 renders the overall architecture. Aesaf SVM
(SVM'9"t implementation) classifiers using linear kernels com-
prise the low-level portion of the classification architeet Each
low-level SVM classifier is trained using one group of tenglor
features we introduced in Section 4.1. Here, since the owpu

SVM!9"* can reflect the distance of each test example to the de-

cision boundary, representing the confidence of decisiwesdi-
rectly use SVM for the low-level classifiers. The high-leetdssi-
fier we used is a logistic regression classifier implememedtieka
3.5.8[20]. It uses the output values (predictions) giveiolylevel
SVM classifiers as its input feature values, and combines the
ing logistic regression.

5. EXPERIMENTS

In this section, we present the experimental results. We firs
show the sensitivity of each group of temporal features végpect
to the Web spam classification. We then report the performanc
by combining the outputs (predictions) generated by migltigw-
level classifiers.

5.1 Data Set

Output
(predictions)

Spam Classifier
(Logistic Regression)

/

/1 N\

Spam Spam
Classifier Classifier Classifier Classifier
SVM (SVM) (SVM) (SVM)

L L L
(s () || (e ()]l (s () || (vevs))

High level

Low level

Spam Spam Org.
Classifier

(SVM)

Organization
Historical

Features

Figure 1: Two-level classification architecture.

loaded pages within the same site to represent the sitertoifter
organization historical feature extraction, we only use tontent
of site homepages and extract features from it since the ghessm
our training set (ODP external pages) are also based on pagke |

Following a previous work [7], we set the parametkrs= 4.2
andb = 0.8 in BM25 calculation.

5.2 Metric
Precision, recall and F-measure are used to measure our spam
classification performance.

e Precision the percentage of truly positive examples (spam
sites) in those labeled as spam by the classifier;

e Recall the percentage of correctly labeled positive examples
(spam sites) out of all positive examples;

e F-measure a balance betwedprecisionandRecall, which
is defined as:

2 - (Precisionx Recal)
Precisior4- Recall

F_measure=

We also use true positive (tp), false positive (fp), trueatsg (tn),
and false negative (fn) (defined in Table 3) to represent ibiei-d
bution of classifications in a confusion matrix.

5.3 Low-level Classification

Here, we first present the features’ sensitivity with resgec
time-span, and then show the spam classification perforenahc
all low-level classifiers.

Recall that we extract 10 snapshots for each page coveritg 20
to 2007. We vary the time-span we look backwards (i.e., the-nu
ber of snapshots) when calculating feature vectors in dmshow
how each low-level classifier benefits from the historicébima-
tion. All low-level classifiers, except the one for detegtiorgani-

We use the WEBSPAM-UK2007 data set to test our Web spam zation variation, are examined based on five-fold crosstatibn.

classification approach. 6479 sites are labeled by volusitée
which about 6% are labeled as spam sites. We select the 3@26 si
whose complete historical snapshots can be retrieved frap-W
back Machine as our data set, in which 201 sites (5.12%) are la
beled as spam, the rest as normal sites. For term-based r@mpo
feature extraction, we download 10 snapshots covering 2665

to 2007 for each site’s homepage and corresponding up to 490 o
going pages from Internet Archive. We use all the contenoufrd

Notation  Meaning
tp number of positive examples classified as spam
tn number of negative examples classified as non-spam
fp number of negative examples classified as spam
fn number of positive examples classified as non-spam

Table 3: Base evaluation metrics.
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Figure 2: Features’ sensitivity on F-measure performance Vth
respected to time-span.

Since the number of positive examples is small, we use oversa
pling to emphasize positive examples; i.e., positive exampre
replicated 10 times so that the ratio of positive to negativem-
ples in training set is about 1/2.

Figure 2 shows the trends about F-measure spam classificatio
performance with respect to the number of snapshots. The cla
sifier trained by Ave(T) has the best performance in most<ase
Its F-measure increases first, but gradually falls when tiaber
of used snapshots is greater than 4. Ave(S) keeps benefiting f
the extended time-span until the number of snapshots redthe
Dev(S) and Dev(T) have similar trends, but both of them ahie
unstable benefits with the extension of time-span. FigureoBvs
the sensitivity of Decay(T)'s F-measure performance wéspect

0.42
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Figure 3: Feature Decay(T)’s sensitivity on F-measure pedt-
mance with respect to time-span and decay rate.

that its feature values can be much different from those @&f(Ay.

We find that Decay(T) has the highest F-measure performance,
followed by BM25, Dev(T), and Ave(T). ORG has the lowest F-
measure performance, but the highest recall. As we showleddhe
although spam sites have a higher probability of having ghen
their ownership, a portion of normal sites also changed.

5.4 High-level Combination

We use logistic regression to combine the scores generated b
each low-level SVM classifier. The low-level classifiers aegned
using all ten snapshots; our goal is to ascertain whether$fyain
classification can benefit from using temporal featurefierathan
finding the best performance by tuning this parameter forex sp
cific data set. The decay rate used in Decay(T) is set to be 0.95

to decay rate and time-span. As we expected, the F-measure isSince we hope this group of features can have much difference

more sensitive to the time-span when the decay rate is samall,
becomes less sensitive with the increase in decay rate, d&s it
emphasizes the influence of the earlier snapshots. The édetp
mance is 0.434, which is achieved when decay rate is 0.05hand t
number of snapshots is 4.

Recall that we use selected ODP external pages to train dnd va
idate as SVM classifier for detecting whether the target Isite
changed its organization from 2004 to 2007 (see Sectionat.1 f
a detailed description). We first perform five-fold crosdidation
based on this data set. Precision, recall and F-measure&is, 0
0.810 and 0.818, respectively. Since both precision anallrae
above 80%, we directly apply this classifier on the spam deta s
and assume that it still can give relatively accurate lab&tsord-
ing to our classifier, 37.31% spam sites have changed thganer
zations while this figure is lower (14.8%) for non-spam sites

Our baseline is the SVM classifier (SVM"* implementation)
trained using the BM25 score feature vectors providedthe cur-
rent snapshot. We parsed all documents and represent thenton
of selected sites by concatenating the terms of all pagésnie
same site together. After removing stop words, the top 228
guent words are chosen as feature words.

The performance comparison among low-level classifiersds p
sented in Table 4. Here, the performance is based on 10 sstapsh
by default rather than the best performance by tuning thebmum
of snapshots. We set the decay rate of Decay(T) to be 0.9 dop

2http://www.yr-becn.es/webspam/datasets/uk2007/casten

from Ave(T). The combination performance is shown in Tahle 5
All the performance combined by one lower-level classified a
the baseline shows 7.2%-28.7% improvement on F-measuee. Th
best F-measure is 0.527, which outperforms the baselinedrg m
than 30% when combined with Dev(S), Dev(T), and ORG features
Higher recall is usually the reason for high F-measure,esime-
cision performance is much higher in all cases. We also aotic
that F-measure performance has an overall slight decrease w
the number of combined low-level classifiers is greater than

6. DISCUSSION AND FUTURE WORK

In this section, we discuss a few issues, including the impfc
using historical information to detect spam pages, someatavn
this work and potential future work.

[ Prec.| Rec. [F-meas.][tp [ fn [ fp | tn

BM25 || 0.674] 0.280] 0.404 || 58 ] 143 ] 28 | 3607
Dev(S) || 0.530| 0.214| 0.304 || 43| 158 | 38 | 3687
Dev(T) || 0.529 | 0.274| 0.361 | 55| 146 | 49 | 3676
Ave(S) || 0.744| 0.144| 0242 | 29| 172 | 10 | 3715
Ave(T) || 0573 | 0.234| 0.332 || 47| 154 | 35 | 3690
Decay(T) || 0.656 | 0.303| 0.415 || 61| 140| 32 | 3693

ORG || 0.120 0.373| 0.181 || 75 | 126 | 552 | 3173

Table 4: Performance of low-level classifiers when using ten
shapshots.



Combination || Precision | Recall | F-measure || tp [ fn | fp tn
BM(baseline) 0.674 0.289 0.404 58 | 143 | 28 | 3697
BM+Dev(S) 0.560 0.418 0.479 84 | 117 | 66 | 3659
BM+Dev(T) 0.675 0.423 0.520 85| 116 | 41 | 3684
BM+Ave(S) 0.602 0.338 0.433 68 | 133 | 45 | 3680
BM+Ave(T) 0.636 0.348 0.450 70 | 131 ] 40 | 3685
BM+Decay(T) 0.664 0.373 0.478 75| 126 | 38 | 3687
BM+ORG 0.640 0.353 0.455 71| 130 | 40 | 3685
BM+Dev(S)+Dev(T)|[ 0.635 | 0.433 0515 87] 114 50 | 3675
BM+Dev(S)+Ave(S) 0.602 0.353 0.445 71| 130 | 47 | 3678
BM+Dev(S)+Ave(T) 0.645 0.398 0.492 80 [ 121 | 44 | 3681
BM+Dev(S)+Decay(T) 0.621 0.408 0.492 82| 119 | 50 | 3675
BM+Dev(S)+ORG 0.579 0.418 0.486 84 | 117 | 61 | 3664
BM+Dev(T)+Ave(S) 0.600 0.343 0.437 69 | 132 ]| 46 | 3679
BM+Dev(T)+Ave(T) 0.694 0.373 0.485 75| 126 | 33 | 3692
BM+Dev(T)+Decay(T) 0.664 0.403 0.502 81| 120 | 41 | 3684
BM+Dev(T)+ORG 0.689 0.418 0.520 84 | 117 | 38 | 3687
BM+Ave(S)+Ave(T) 0.585 0.343 0.433 69 | 132 | 49 | 3676
BM+Ave(S)+Decay(T)|| 0.568 | 0.353 0.436 71| 130 | 54 | 3671
BM+Ave(S)+ORG 0.619 0.348 0.446 70 | 131 | 43 | 3682
BM+Ave(T)+Decay(T) 0.667 0.358 0.466 72 | 129 | 36 | 3689
BM+Ave(T)+ORG 0.726 0.343 0.466 69 | 132 | 26 | 3699
BM+Decay(T)+ORG 0.721 0.373 0.492 75| 126 | 29 | 3696
BM+Dev(S)+Dev(T)+Ave(S) 0.559 0.353 0.433 71| 130 | 56 | 3669
BM+Dev(S)+Dev(T)+Ave(T) 0.609 0.403 0.485 81| 120 | 52 | 3673
BM+Dev(S)+Dev(T)+Decay| 0.618 0.403 0.488 81| 120 | 50 | 3675
BM+Dev(S)+Dev(T)+ORG 0.650 0.443 0.527 89 | 112 | 48 | 3677
BM+Dev(S)+Ave(S)+Ave(T) 0.578 0.333 0.423 67 | 134 | 49 | 3676
BM+Dev(S)+Ave(S)+Decay(T) 0.580 0.378 0.458 76 | 125 | 55 | 3670
BM+Dev(S)+Ave(S)+ORG 0.608 0.363 0.455 73| 128 | 47 | 3678
BM+Dev(S)+Ave(T)+Decay(T) 0.658 0.393 0.492 79| 122 | 41| 3684
BM+Dev(S)+Ave(T)+ORG 0.650 0.378 0.478 76 | 125 | 41 | 3684
BM+Dev(S)+Decay(T)+ORG 0.656 0.408 0.503 82| 119 | 43 | 3682
BM+Dev(T)+Ave(S)+Ave(T) 0.568 0.313 0.404 63 | 138 | 48 | 3677
BM+Dev(T)+Ave(S)+Decay(T) 0.571 0.358 0.440 72| 129 | 54 | 3671
BM+Dev(T)+Ave(S)+ORG 0.617 0.353 0.449 71| 130 | 44| 3681
BM+Dev(T)+Ave(T)+Decay(T) 0.685 0.378 0.487 76 | 125 35| 3690
BM+Dev(T)+Ave(T)+ORG 0.699 0.358 0.474 72 | 129 | 31 | 3694
BM+Dev(T)+Decay(T)+ORG 0.699 0.393 0.503 79| 122 | 34 | 3691
BM+Ave(S)+Ave(T)+Decay(T) 0.579 0.363 0.446 73| 128 | 53 | 3672
BM+Ave(S)+Ave(T)+ORG 0.588 0.333 0.425 67 | 134 | 47 | 3678
BM+Ave(S)+Decay(T)+ORG 0.559 0.353 0.433 71| 130 | 56 | 3669
BM+Ave(T)+Decay(T)+ORG 0.680 0.348 0.461 70 | 131 | 33| 3692
BM+Dev(S)+Dev(T)+Ave(S)+Ave(T) 0.544 0.338 0.417 68 | 133 | 57 | 3668
BM+Dev(S)+Dev(T)+Ave(S)+Decay(T)| 0.533 | 0.363 0.432 73 | 128 | 64 | 3661
BM+Dev(S)+Dev(T)+Ave(S)+ORG 0.566 0.363 0.442 73| 128 | 56 | 3669
BM+Dev(S)+Dev(T)+Ave(T)+Decay(T)| 0.642 | 0.393 0.488 79 | 122 | 44 | 3681
BM+Dev(S)+Dev(T)+Ave(T)+ORG 0.642 0.383 0.480 77 | 124 | 43 | 3682
BM+Dev(S)+Dev(T)+Decay(T)*ORG| 0.667 | 0.398 0.498 80 | 121 | 40 | 3685
BM+Dev(S)+Ave(S)+Ave(T)+Decay(T)| 0.567 | 0.358 0.439 72 | 129 | 55 | 3670
BM+Dev(S)+Ave(T)+Decay(T)+ORG| 0.679 0.378 0.486 76 | 125 | 36 | 3689
BM+Dev(T)+Ave(S)+Ave(T)+Decay(T)|[ 0534 | 0.308 0.391 62 | 139 | 54 | 3671
BM+Dev(T)+Ave(T)+Decay(T)+ORG 0.714 0.373 0.490 75| 126 | 30 | 3695
BM+Ave(S)+Ave(T)+Decay(T)+ORG|| 0.567 | 0.358 0.439 72 | 129 | 55 | 3670
BM+Dev(S)+Dev(T)+Ave(S)+Ave(T)+Decay(T]] 0.507 | 0.338 0.406 68 | 133 | 66 | 3659
BM+Dev(S)+Dev(T)+Ave(S)+Ave(T)+ORGE| 0.541 0.328 0.409 66 | 135 | 56 | 3669
BM+Dev(S)+Dev(T)+Ave(S)+Decay(T)+OR® 0.522 0.353 0.421 71| 130 | 65 | 3660
BM+Dev(S)+Dev(T)+Ave(T)+Decay(T)*ORG| 0.648 | 0.393 0.489 79 | 122 | 43 | 3682
BM+Dev(S)+Ave(S)+Ave(T)+Decay(T)+OR{G| 0.565 0.348 0.431 70| 131 | 54| 3671
BM+Dev(T)+Ave(S)+Ave(T)+Decay(T)+ORG| 0.549 | 0.308 0.395 62 | 139 | 51 | 3674
[ BM+Dev(S)+Dev(T)+Ave(S)+Ave(T)+Decay(T)*ORE 0539 | 0.343 | 0419 [ 69 [ 132 ] 59 | 3666

Table 5: Combined performance.



6.1 Impact

Page historical information provides a valuable completagn
resource to help classify Web spam since spam pages andInorma
pages show different patterns of evolution. The idea andahe
tures that we use can be generalized to a variety of othei-appl
cations. For example, the anchor text on the links which fpimin
target pages are often not updated promptly since the coateh
topics of target pages change over time without notifyireylthks
pointing to them. By tracking how target pages evolve, weaan
tomatically identify whether the anchor text has becomée sta
not, which may also be helpful on detecting hacked sitesaand/
paid links. Further, we can infer pages’ freshness which may
fluence the authority scores pages should be given, andfahere
potentially influence link-based authority calculatiom. dddition,
document classification algorithms which utilize informatfrom
neighbor nodes may also benefit from this idea since a neighbo
referenced by a stale link should have a lowered contributiche
content representation of the target page.

In this work, we track the evolution patterns mainly based on
documents’ term-level content representation, and use tas
signals for the page/site quality measurement (i.e., deténg
whether the site is a spam site). From the experiments, weenot
that most of combined performance have high precision ¢atou
0.7). Therefore, we infer that these trained classificatimdels
can be potentially used in the post-processing of searclitse®
filter the spam pages that would otherwise appear in thenetur
search results.

6.2 Caveats

e The examples we select are the ones for which the Internet

Archive can provide complete historical snapshots (attleas
for each site’'s home page) from 2004 to 2007. Therefore,
the ratio of spam sites (around 5%) is lower than that in the
whole WEBSPAM-UK2007 dataset (around 6%). This se-
lection of examples may influence the classification perfor-
mance.

We use a site’s homepage along with up to 400 first-level

site subdirectory pages to represent a web site. Howewer, th

subdirectory pages may not have consistent snapshots (i.e.
some subdirectory pages only have historical snapshots in
2004, but not in 2006), which influences the classification

performance.

SVM classifiers prefer the majority class and aim to maxi-
mize the accuracy metric, which is given by:

the number of correctly classified examples
the total number of examples

accuracy=

We did not tune the cost factor but directly copied positive
examples ten times such that the ratio of positive to negativ
examples is 1/2.

6.3 Future work

Tuning the number of snapshots in classification modelsThe
combined performance presented in this work is only basethi®n

features extracted from 10 snapshots. We can mix the proe@du

Although we have shown that temporal features extractet fro
historical snapshots are useful in classification of webrspaur
proposed method may suffer from the following limitations.

tuning the best number of snapshots we should use into fiGaini
this two-level classification architecture, which may hat im-
prove performance. Besides, it is also helpful to investighe

¢ The manual judgement regarding whether the target page hassensitivity of spam classification performance with respgedhe
changed ownership is only based on the organization infor- time-span in which pages change organizations.
mation shown on the page and whether the page has changed Examining alternative classifiers. In this work, we use SVMs

its topics dramatically if the ownership information is ab-

to train our low-level classification models. In the futungs might

sent. However, accurate page ownership information should generalize it onto other classification models, such assieti
be confirmed by historical WHOIS registration data. We ex- trees, etc., and investigate the time-related sensitititg varia-
pect that the classification model (ORG) would be more ac- tion of the number of snapshots used) with respect to Web spam

curate if WHOIS data were included.

e We mainly focus on the evolution patterns of BM25 scores

classification performance.
Combining other temporal features. Most of the features pro-
posed in this work are based on content. Given enough teinpora

which are based on term vector space features, and whetherjiny intormation, we can extract similar temporal featutesough

the sites change their organizational ownership within the
past four years. Many other features which reflect page con-

the variation of link information for each site, which may tmere
generalizable for the spam classification task. In the &jtee plan

tent variation can be considered, such as topic change and S0, exfract link-based and/or other temporal features, amdpare

on. The term-level features only reflect the finest grantylari
with respect to document topics.

the performance with classifiers trained using the currentent-
based temporal features. For example, the features estrfimm

e Term-based features are too sensitive to the terms selectedthe variation of anchor text within pages and the in-linke ant-

from the vocabulary, which might limit the generalizatian t
some extent.

While we show the classification performance (F-measurs) ha
prominent improvement when combining temporal featureth wi
the baseline, the absolute performance is not very high. Wife s
marize the main reasons as follows:

links may contain plenty of useful signals on both page dyali
change and organization charigdt may be also valuable to in-
vestigate the influence of changes in nameservers, WHOU- inf
mation, and site ages on page quality analysis. In the futuee
will combine the temporal content features and other tewrden-
tures together to test how much these features can boost ¢he W
spam classification performance. Besides, we will exantisan-

e We assume that the classifier for identifying sites whichehav  correctly classified examples, analyze the reasons, ancharize
changed organizational ownership within the past fourgear the discovered error types. We also plan to investigate howhm
can correctly classify the sites in the WEBSPAM-UK2007 overlap these feature groups have with those that are usefleb
dataset since the classification performance on ODP dataset spam classification.

is high (both precision and recall are above 0.8 based on five-

fold cross-validation). However, the misclassified datiafso
do introduce noise into the Web spam classification.

%It is noted that some page-level temporal link features alg o
used in the ORG classifier.



7.

Spam pages and normal pages have different evolution patter

SUMMARY

with respect to page content and links. In this work, we show [12]
that historical information can be a useful complementaspurce
for Web spam classification. We introduce several groupgioft
poral features mainly based on historical content vanmgtiand
demonstrate their capability for spam detection in the WEBIS-

UK2007 data set. The best F-measure performance of congbinin [14]
multiple classifiers trained using different groups of teat out-
performs our textual baseline (the BM25 score vectors taied
using current site content) by 30%.
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