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ABSTRACT
Spammers in social bookmarking systems try to mimick
bookmarking behaviour of real users to gain the attention
of other users or search engines. Several methods have been
proposed for the detection of such spam, including domain-
specific features (like URL terms) or similarity of users to
previously identified spammers. However, as shown in our
previous work, it is possible to identify a large fraction of
spam users based on purely structural features. The hyper-
graph connecting documents, users, and tags can be decom-
posed into connected components, and any large, but non-
giant components turned out to be almost entirely inhabi-
tated by spam users in the examined dataset. Here, we test
to what degree the decomposition of the complete hyper-
graph is really necessary, examining the component struc-
ture of the induced user/document and user/tag graphs.
While the user/tag graph’s connectivity does not help in
classifying spammers, the user/document graph’s connec-
tivity is already highly informative. It can however be aug-
mented with connectivity information from the hypergraph.
In our view, spam detection based on structural features, like
the one proposed here, requires complex adaptation strate-
gies from spammers and may complement other, more tra-
ditional detection approaches.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.2.6 [Artificial Intelligence]: Learning; G.2.2 [Graph
Theory]:

General Terms
Tagging, Connected Components, Spam Detection

1. INTRODUCTION
Social bookmarking systems by now have been drawing

enough attention to create incentives for spammers to pol-
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lute their data. In order to promote a website, they pretend
to be saving it for later reference like normal users. As those
posts are typically publicly visible, they hope to either trick
users into visiting their website or to be rewarded by search
engines for being linked from a high-profile website such as
the social bookmarking site. There is a growing body of
research on this topic from simulating the impact of spam
users on the overall dataset [3] over the analysis of suspicious
patterns in an unlabelled dataset[11] to actual prediction
approaches. These approaches are typically based either on
domain-specific features of the posted items, or on methods
that create similarities between users such that evidence can
be propagated from known to unknown users ([5],[2],[7]).

This article extends previous work[8] on connectivity in
tagging datasets, further exploring the role of spam be-
haviour under various definitions of connectivity. We pre-
suppose there are fundamental differences between legiti-
mate and spamming bookmarking behaviour, and that these
differences should be mirrored in the structure of the result-
ing data. One such structural property is the distribution of
connected components, those subgraphs of a graph which do
not share connections among each other. In the following, we
define three different ways for the creation of connected com-
ponents of graphs derived from the original data. We apply
our aproach to the Bibsonomy social bookmarking dataset
and find a salient giant component and spam-polluted next-
largest components in both the complete hypergraph and
the user/document graph, i.e., ignoring tags. Based on these
findings, we propose a simple user spam predictor based on
membership in the giant or the next-largest components of
the two graphs. We can show that the complete hyper-
graph’s and the user/document graph’s connectivity struc-
tures contain at least partially complementary information.
We conclude by discussing the pros and cons of the proposed
approach and listing possible future extensions.

2. CONNECTED COMPONENTS
Each single event of a user u tagging a document d with

a tag t can be interpreted as an edge connecting the three
nodes (d, u, t). The set of all edges then defines a 3-partite
(because connected elements are from three different sets)
3-uniform (because each edge connects exactly three nodes)
hypergraph H. Interpreting social bookmarking data as a
graph structure allows us to apply a basic analytic tool for
complex graphs: the examination of connected components.
The connected components of a graph define its disjunct
subgraphs, i.e. a partition of its nodes such that a path ex-
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Figure 1: A sample 3-uniform hypergraph with edges plotted as nodes ei. The blue, dotted lines indicate
2-hyperincidence between edges e1 and e2 / e3 and e4, respectively. e2 and e3 are incident via u2, but not
2-hyperincident, turning a single connected component into two 2-hyperincident connected components

ists between any pair of nodes within a component, but no
path exists between any two nodes from two different com-
ponents. The size distribution of connected components and
in particular the existence and relative size of a so-called “gi-
ant component”, i.e., a single connected subgraph containing
a majority of nodes, is a very well-researched phenomenon
that can yield valuable insights into the underlying forma-
tion dynamics. For example, a graph created by randomly
adding edges to a fixed set of vertices almost certainly ex-
hibits a so-called“percolation transition”, i.e., the emergence
of a giant connected component, when the ratio of edges to
vertices exceeds 0.5[1].

Decomposing tagging networks into their connected com-
ponents using the classic notion of connectivity, however,
turns out to be uninformative: they tend to be almost en-
tirely connected. Therefore, we propose three alternatives.

The user/document-graph UD(H) is defined by the edges
{(d, u) : ∃(d, u, t) ∈ H}, i.e., tags are ignored and only
shared documents imply connectedness.

The user/tag-graph UT(H) analogously is defined by the
edges {(u, t) : ∃(d, u, t) ∈ H}.

Hyperincident-connected components[8] allow for the di-
rect decomposition of H in spite of its high connectivity.
We basically raise the criterion for being connected: We say
two edges are m-hyperincident if they share not one, but m
nodes. Then, m-hyperincident components can be defined as
partitions of edges such that paths of m-hyperincident edges
exist between all members of a component, but not between
members from two different components. Since this defini-
tion partitions edges instead of nodes, nodes can be part of
several connected components. Figure 1 shows an example
of a 3-hypergraph and its 2-hyperincident connected com-
ponents.

To see why such a definition might be useful, consider a
spammer who tries to appear legitimate by tagging ’cnn.com’
with ’news’ (assuming this is a frequent association). The
corresponding edge (’cnn.com’, spamuser, ’news’) would be
connected to the giant component, since the new edge is 2-
incident to the assumed edges (’cnn.com’, realuser, ’news’)
and correctly be considered legitimate. Consider a second
entry by that user: (’spam.com’, spamuser, ’spamtag’). As-
suming that neither ’spam.com’ nor ’spamtag’ are part of
the giant component, this edge is incident, via the user, but
not 2-incident to any edge in the giant component. So while
normal connectivity conditions would would join this edge
to the giant component, the stricter conditions automati-
cally counteract basic cloaking measures of spammers and
keep such entries isolated. We will now examine how much
additional information we gain by this in practice.

3. ANALYSIS
Analyses were performed on the Bibsonomy dataset[9] as

provided to the participants of the PKDD/ECML 2008 Tag
Spam Discovery Challenge[4]. It consists of 16,818,699 edges
connecting 1,574,963 documents, 396,474 tags and 38,920
users. 93% of all users have been hand-labelled as spammers.
In the following, we present an analysis on this dataset in its
complete form (black) and on a cleaned version containing
only non-spam data (green).

Figure 2 presents the distribution of component sizes of
the different induced graphs. Figure 3 details the sizes of
the ten largest components of each. First of all, we see
that UT (H) is almost entirely connected both in the spam
and the non-spam dataset. For UD(H) and H, however,
we see a distinct giant component followed by much smaller
(around two orders of magnitude) components in the non-
spam dataset. This distinction, however, is weakened in
the spam dataset. It turns out that only 82.5%/80.6% of
the users in UD(H)’s / H’s giant component are spammers
(compared to 93% in the overall population), whereas the
following next-largest components are made up almost ex-
clusively by spammers. Figure 4 quantifies this notion by
plotting for each class (spam/non-spam user) the fraction of
its members in the different types of components. Here, we
can see in particular that the fraction of legitimate users in
next-largest components is marginal.

The conclusion from these graphs is that spam behaviour
creates groups of users tagging documents which the ma-
jority of legitimate users is not interested in. The decom-
position of UT (H) does not show such behaviour, which
might imply this separation is based on document selection
entirely. However, we see the connectivity patterns slightly
differ in the hypergraph. This implies tags do play a sub-
tle role which however needs to be exploited in combination
with the corresponding documents.

4. SPAM PREDICTION
Based on the results of Figure 4 and to further explore the

relation between UD(H)’s and H’s connectivity, we devise
a simple classification scheme. Users are classified as non-
spam if contained in the giant component. If isolated, we
judge them neutrally, and membership in a large but non-
giant component leads to the user being labeled as a spam-
mer. We combine (blue) the predictions based on UD(H)
(red) and the hypergraph (black) such that users rated as
spammers via both graphs receive a higher spam rating than
those only rated as spam by one. Since we assume that many
of the isolated components are caused by users which have
tagged only very few documents, we additionally evaluate
these heuristics on the subsets of users having tagged more
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Figure 2: Distribution of component sizes – component size (x) vs. number of components of that size (y).
Distributions roughly follow a power law-like shape in both spam (black) and non-spam (red) datasets.
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Figure 3: Size of 10 largest components – the size of the next-largest components decays sharply in the
non-spam (green) dataset (several orders of magnitude), but much more smoothly when spam (black) is
included.
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Figure 4: Distribution of spam (black) and non-spam (green) users over different classes: Isolated components
containing only a single user, next-largest components (nlc) containing more than one user, but not being
the giant component, or the giant component. In the case of the hypergraph, users can be part of both the
giant and next-largest components (since component membership is unique only for edges.)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a) all users

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b) users ≥ one document

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(c) users ≥ 10 documents

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(d) users ≥ 100 documents

Figure 5: ROC curves for user spam prediction based on component membership in the user/document graph
(red), the entire hypergraph (black) or a combination of both (blue). Curves are produced by plotting the
ratio of false positives (x) against the ratio of true positives (y) as the classification threshold decreases from
maximum to minimum. Discrete values are assigned based on membership (see text), producing edges in the
ROC curves whenever the threshold passed one of those values.



than 1, 10, or 100 documents (Figures 4 b), c) and d)).
Table 1 shows the performance values when applying these

heuristics. The employed AUC measure (area under the
curves displayed in Figure 5) is a balanced accuracy measure
taking into account that the class of spam users is much
bigger: Labelling each user as a spammer would create an
accuracy of 93%, but an AUC of exactly 0.5%. As was
to be expected from the distribution of users, UT (H) does
not provide any usable information. The other approaches
however do well, particularly on users with more documents.
The hypergraph’s connectivity is slightly more informative
than UD(H)’s. However, the performance of the combined
predictor exceeds that of both individual ones. This suggests
that neither graph’s connectivity is redundantly encoded by
the other’s, i.e., there must be users which are in a next-
largest component in one graph but not in the other.

Figure 5 further explores the relation between the three
classifiers. We see the ROC curves for each classifier and
each subset of users. It turns out that UD(H) provides
slightly less false positives for the spam condition (producing
the first slope), whereas the hypergraph is more expressive
for the non-spam condition (responsible for the third slope).
The simple combination of the classifiers unites both advan-
tages, as can be seen by its ROC curve being an almost
perfect upper bound for the other two’s.

5. DISCUSSION
We have examined different decompositions of a tagging

dataset into connected components. The results suggest that
the characteristic giant component of the entire hypergraph,
also found in other tagging datasets[8], is largely caused by
user/document connections, which mirror this distribution.
Although UT (H) does not show any meaningful component
structure, the full hypergraph’s connectivity contains addi-
tional structure not present in UD(H). This suggests that
tags can contain meaningful connectivity information, but
more subtly than what could be captured by UT (H). This
was also implied by the improved performance of the com-
bined classification heuristics.

The introduced heuristics cannot reach the performance
of highly specialized classifiers. Nevertheless, they might be
used as building blocks of more complex classifiers. Inde-
pendent from content or prior labels, they can also be used
under a wider range of conditions – for example, when the
tagged resources are more difficult to extract features from
than URLs, e.g. movies. More generally, we believe identify-
ing behavioural patterns will help creating spam prediction
mechanisms that are harder to fool. In bookmarking their
favourite resources, human beings create traces of complex
cognitive processes. Finding properties that separate data
resulting from those processes from that of shallow spam-
ming activities should considerably raise the costs of creat-
ing innocent-looking spam.

Nevertheless, our decompositions remain somewhat coarse
particularly for users with few documents. Besides validat-
ing our findings on additional datasets with spam, we want
to explore possibilites of further restricting connectivity in
the future. In [10], the authors explore the connectivity
of graphs between users only, created through thresholded
similarity functions. These and other aspects of connectiv-
ity, like the temporal evolution of component structure[6],
can yield further insight into the dynamics of legitimate and
spamming bookmarking behaviour.

min # docs/user
0 1 10 100

User/Document 0.73 0.78 0.81 0.84
User/Tag 0.49 0.49 0.50 0.50
Hypergraph 0.73 0.78 0.84 0.88
Combined 0.76 0.81 0.87 0.91

Table 1: AUC values of the different connectivity-
based classifiers
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