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ABSTRACT

In this paper, we study the overall link-based spam structure
and its evolution which would be helpful for the development
of robust analysis tools and research for Web spamming as a
social activity in the cyber space. First, we use strongly con-
nected component (SCC) decomposition to separate many
link farms from the largest SCC, so called the core. We
show that denser link farms in the core can be extracted by
node filtering and recursive application of SCC decomposi-
tion to the core. Surprisingly, we can find new large link
farms during each iteration and this trend continues until at
least 10 iterations. In addition, we measure the spamicity
of such link farms. Next, the evolution of link farms is ex-
amined over two years. Results show that almost all large
link farms do not grow anymore while some of them shrink,
and many large link farms are created in one year.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Experimentation, Measurements
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1. INTRODUCTION

Addressing web spam is critical not only for search en-
gines but also for web analysis applications based on Web
archives, such as topic tracking, time-frequency analysis of
blog postings, and web community extraction. Although
the main purpose of web spammers is boosting the ranking
of their pages in search results, their spamming techniques
also confuse various methods for web analysis. For example,
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when we use link-based community extraction methods such
as HITS [1] and trawling [6], the results would include many
link farms, densely connected Web pages created intention-
ally for boosting PageRank [2]. Term spam which stuffs
numerous keywords artificially in pages can easily contam-
inate the result of time-frequency analysis of terms in the
Web.

We have developed a Socio-Sense system [3] to analyze
social activities and behaviors from our web archive with
Japanese-centric Web contents crawled for 9 years (10 billion
pages in total). The main users of the system are sociologists
and marketing people who are interested in how the Web
evolves according to activities in the real and cyber worlds.
The system makes it possible to observe and track trends on
topics, by providing Web structural analysis tools, such as
a relation map of link-based web community [4], temporal
analysis of community evolution [5]. For eliminating spam
from those results, and for developing robust analysis tools,
it is important to understand the overall structure of spam
sites and their evolution. On the other hand, the evolution
of spam itself is a fascinating social activity in the cyber
space that might be researched by sociologists.

In this paper, we study the overall distribution and evo-
lution of link farms in a large host graph of the Japanese
Web crawled in 2004, 2005, and 2006. In our previous work
[7], using a single Web snapshot of 2004, we applied strongly
connected component(SCC) decomposition algorithm to the
Web graph, and showed that almost all of large SCCs, ex-
cept for the largest SCC so called the core, are link farms.

We expanded out previous work to examine the distribu-
tion of denser link farms in the core. That is, we prune
nodes with small degrees from the core, and apply SCC de-
composition to the pruned core recursively with increasing
degree threshold. After extracting link farms, we evaluated
the spamicity of them. Next, the evolution of these link
farms is examined over two years. We show that almost all
large link farms do not grow anymore, and most of them are
created in one year.

The rest of this paper is organized as follows. In Section
2, we review previous work related with our study. Section
3 describes datasets. In Section 4, the experimental results
are presented. Finally we summarize and conclude our work
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Link spamming is one of the web spamming techniques
that try to mislead link-based ranking algorithms such as



PageRank [2] and HITS [1]. Since these algorithms consider
a link to pages as an endorsement for that page, spammers
create numerous false links and construct an artificially in-
terlinked link structure, so called a spam farm, to centralize
link-based importance to their own spam pages [11].

To understand the web spamming, Gyodngyi et al. de-
scribed various web spamming techniques in [10]. Optimal
link structures to boost PageRank scores are also studied
to grasp the behavior of web spammers [11]. Fetterly et
al. found out that outliers in statistical distributions are
very likely to be spam by analyzing statistical properties of
linkage, URL, host resolutions and contents of pages [§].

To demote link spam, Gyongyi et al. introduced TrustRank
[12] that is a biased PageRank where rank scores start to be
propagated from a seed set of good pages through outgo-
ing links. By this, we can expect spam pages to get low
rank. Optimizing the link structure is another approach to
demote link spam. Carvalho et al. proposed the idea of
noisy links, a link structure that has a negative impact on
link-based ranking algorithms [15]. Qi et al. also estimated
the quality of links by similarity of two pages [16].

To detect link spam, Benczir et al. introduced SpamRank
[13]. SpamRank checks PageRank score distributions of all
in-neighbors of a target page. If this distribution is abnor-
mal, SpamRank regards a target page as a spam and penal-
izes it. Becchetti et al. employed link-based features for the
link spam detection. They built a link spam classifier with
several features of the link structure like degrees, link-based
ranking scores, and characteristics of out-neighbors. [14]

Saito et al. employed a graph algorithm [7] to detect link
spam. They decomposed the Web graph into strongly con-
nected components and discovered that large components
are spam with high probability. Link farms in the core were
extracted by maximal clique enumeration. This work is sim-
ilar to ours in the respect that both apply SCC decompo-
sition algorithm on the Web, but we introduced a recursive
SCC decomposition to extract spam structures in the core
instead of clique enumeration. Moreover, we observed the
change in spam components extracted from the time series
of the Web snapshots which has never been explored as far
as we know.

3. DATASET

We used two different datasets for our experiments. The
first set is a set of large scale snapshots of Japanese Web
archive. These snapshots are built by crawling that con-
ducted from 2004 to 2006. Basically, our crawler is based
on the breadth first crawling, except that it focuses on pages
written in Japanese. We collected pages outside the .jp do-
main if they were written in Japanese. The crawler stopped
collecting pages from a site if it could not find any Japanese
pages on the site within the first few pages. Hence, our
snapshot contains pages written in various languages such
as English. Our crawler does not have an explicit spam filter
while it detects mirror servers and tries to crawl only rep-
resentative servers. Therefore, our archive includes spam
hosts without mirroring.

In this paper, we will use a host graph, where each node is
a host and each edge between nodes is a hyperlink between
pages in different hosts. Host graphs for 2004, 2005 and
2006 were built. In each graph, we included only hosts that
existed in the 2006 archive, and did not consider hosts dis-
appeared from 2004 to 2005. This is because we could not

distinguish whether those hosts really disappeared or they
were just not reached by our crawler. As a result, we focus
on the growth rate of link farms that had existed for two or
three years. The properties of our Web snapshot are shown
in Table 1.

The second set is WEBSPAM-UK datasets. These are
public datasets achieved by crawling .uk in May 2006 and
May 2007 [18]. Both labeled and unlabeled hosts are in-
cluded in them.! Due to the several differences between
2006 and 2007 datasets, we did not examine the evolution
of link farms.

Table 1: The Properties of the Japanese host graph
Year [ 2004 2005 2006
2.98M  3.70M  4.02M
67.96M 83.07TM 82.08M

Number of nodes(hosts)
Number of edges

Table 2: The Properties of the WEBSPAM-UK host
graph

Year [ 2006 2007

Number of nodes(hosts) | 11,402 114,529
Number of nodes(hosts) | 11,402 114,529
Number of edges 730,774 1,836,441
Number of labeled hosts 10,662 6,479

4. EXPERIMENTS

In this section, we introduce our approach to extract links
farms from the large-scale Web graph, and describe the de-
tails of link farms in two different datasets (See Section 3).
We evaluate the spamicity of such link farms and observe
their changes through time.

4.1 Strongly Connected Component
Decomposition with Node Filtering

In order to extract the link spam structure, we decom-
posed the host graph into strongly connected components
(SCCs), where every pair of nodes has a directed path be-
tween them. SCCs of a directed graph are maximal strongly
connected subgraphs. The result of SCC decomposition of
the Web graph is known to include the largest SCC (so called
the core) with about 30% of all nodes, and many smaller
SCCs [9]. Since spam sites construct a densely connected
link structure [11], and links between spam and normal site
seldom exist, it can be expected that spam sites form a SCC.
Our previous work [7] confirmed that 95% of SCCs around
the core whose size is over 100 are link farms, but we could
not efficiently find denser link farms left in the core.

We expand the previous work by introducing a recursive
SCC decomposition with node filtering. That is, we prune
nodes with small degrees from the core, and apply SCC de-
composition to the pruned core recursively with increasing
degree threshold. That is, after we decompose the whole
host graph into SCCs, we filter out nodes in the core whose
in-degree and out-degree are smaller than 2, and decom-
pose the remaining hosts in the core again. As a result,
we can extract denser SCCs in the core. Next, we consider
the largest among newly obtained SCCs, and discard nodes

1As for UKSPAM-2006, we used Version 2.0. data. 93.5%
of total hosts was labeled. 8,123 hosts were normal, 2,113
were spam and 426 were undecided.
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Figure 1: SCC size distribution of each year. Each graph shows the size distribution of different level SCCs.

of which in and out degrees are smaller than 3, and apply
the decomposition algorithm to the remaining hosts. This
process is performed recursively with incrementing degree
threshold, and continued while we have large SCCs in the
results. Here is terminology we will use in this paper.

Core Core is the largest strongly connected component
obtained by SCC decomposition of the graph.

Level 1 graph Level 1 graph is the whole host graph.

Level n graph Level n graph consists of nodes in the core
of level n — 1 graph whose in and out degree are more
than n.

Level n SCC Level n SCC is the strongly connected com-
ponents obtained by decomposing level n graph.

4.2 Strongly Connected Components of
Japanese Web Archive

4.2.1 Size Distribution of Strongly Connected
Components

The results of the decomposition of the whole hosts, level
2 and 5 graphs are described in Table 3, 4 and 5. The
fraction of the core size to whole nodes in each level graph
increases drastically between level 1 and level 2, in archives
of all years. From level 5 to 10, the fraction is relatively
stable, so we verified SCCs obtained until 10 iterations.

Figure 1 shows the size distributions of different level
SCCs of each year. As the Figure indicates, the size dis-
tribution of SCCs follows the power law, which agrees with
Broder et al. [9]. Moreover, size distributions of SCCs
from different level graphs are also similar in the power-law
exponents. (See Table 7.) Note that an abnormal distribu-
tion appears at the tail of each distribution graph. Such
phenomenon is clear particularly in SCCs with over 100
hosts. We measured their spamicity and discovered large
SCCs with over 100 hosts are very likely to be spam. De-
tails of measurement will be explained in Section 4.2.2.

Figure 2, 3, 4 illustrate the overall structure of level 1
and level 2 SCCs for each year. The left hand side depicts
level 1 SCCs and the right one is for level 2 SCCs. A big gray
node represents a core, black nodes represent SCCs with
over 100 nodes, and white nodes represent smaller SCCs
that connect large SCCs. The size of a node represents

the number of hosts included in the SCC. Two SCCs are
connected by a directed edge when hyperlinks exist between
hosts in SCCs at both ends. Each edge starts from the thick
end and goes to the thin end.

When comparing left and right sides of Figures, we can
see the similar structure appears in the decomposition result
of both the level 1 and level 2 graph. In addition, most large
SCCs are directly connected to the core. Some large SCCs

Table 3: The result of level 1 SCCs

Year 2004 2005 2006
# of nodes 2,978,223 3,702,029 4,017,250
# SCCs 1,888,550 2,188,035 2,483,446
Size of the core 749,166 1,271,253 1,245,152
(%) 25.15 34.34 31.0
Table 4: The result of level 2 SCCs
Year 2004 2005 2006
# of nodes 556,100 949,742 918,826
# SCCs 9,055 12,633 12,182
Size of the core | 520,554 890,703 872,269
(%) 93.60 93.78 95.00
Table 5: The result of level 5 SCCs
Year 2004 2005 2006
# of nodes 302,613 517,057 499,031
# of SCCs 612 830 899
Size of the core | 301,120 512,370 495,451
(%) 99.51 99.10 99.28
Table 6: The result of level 10 SCCs
Year 2004 2005 2006
# of nodes 196,218 329,990 315, 644
# SCCs 127 135 215
Size of the core | 195,926 329, 290 314,950
(%) 99.85 99.79 99.78
Table 7: Exponent of SCC size distributions
Year/Level | 1 2 5
2004 250 -2.50 -2.67
2005 -2.44  -2.60 -2.52
2006 -2.45 -2.54 -2.29

1e+07



form larger link farms by connecting to other large SCCs.
We also checked how level 1 SCCs are connected to level
2 SCCs. Surprisingly, we found that most of level 1 SCCs

5 to level 10 graphs. Details are described in Table 9. We
can see that such a trend remains even when we perform
SCC decomposition on nodes in deeper levels.

are connected directly to the core of the level 2 graph. This

means that most link farms are created independently. .
Table 8: Number of SCCs (size over 100)and hosts

4.2.2 Spamicity of Strongly Connected Components ** th'i};‘ar/Level | i 5 3 R

After extracting SCCs, we evaluated whether they are 2004 # SCCs 298 24 7 9 D)
likely to be a link farms. For spamicity measurement, we # hosts | 182285 18650 9306 5032 249
used hostname properties based on the study of F§tterly et 2005 # SCCs 167 32 18 13 7
al. [8] and Becchetti et al. [14]. We used two metrics; host- # hosts | 95347 38111 8236 15566 2789
name length and spam keywo.rds in a hostname. Spammers 2006 # SCCs 180 2 21 3 ]
tend to generate long URLs like "sample-job-reference- # hosts | 146015 26127 11092 9084 1499

letters.974.us" and stuff terms like porn, casino, cheap,
download in URLs. Since these metrics do not guaran-
tee perfect spam detection as manual classification, we per-
formed the manual classification on large SCCs when they
have low spamicity. Average hostname length of SCC mem-
bers and the percentage of members with a hostname con-
taining spam keywords were computed. Spam keywords
were obtained as follows. First, we extracted hostnames
from SCCs in the 2004 archive, of which cardinality is over
1,000. These hostnames are split into words by non-alphabetic
characters, such as periods, dashes and digits. Then, we

Table 9: Number of link farms among SCCs (size
over 100), in deep level graphs
Year/Level [ 5 6 7 8 9 10
2004 Spam / Total | 2/2 1/2 1/2 1/1 2/2 0/0
2005 Spam / Total | 6/7 3/3 3/3 1/1 1/1 1/1
2006 Spam / Total | 8/8 2/2 3/3 1/1 1/1 0/0

Table 10: The result of SCC decomposition of
WEBSPAM-UK

made a frequency list of these words and chose manually 114

words from 1,000 words with high frequency. Our spam key- E:jzl 21006 9 21007 9
word list contains words in English, Spanish, Italian, French

and Japanese so that it could cover most spam hostnames # of nodes 11,402 7,266 | 114,529 45,565
in various languages. We counted hostnames that contain # SCCs 2,935 574 54,822 969
more than one spam keyword. Hostnames whose first field Size of the core 7,945 6,683 | 59,160 44,564
contains only non-alphabetic words such as dashes and dig- (%) 69.68 91.98 51.66 97.80
its are also counted. The percentage of spam members was Size of 2nd largest SCC 73 6 3 3

obtained, by dividing the number of spam hostnames with
the total number of hostnames in a SCC. For all nodes in
the dataset, the average hostname length was 24.25, and
the percentage of hostnames that contain spam keywords
are 8.97%. Figure 5 and 6 show the results of the measure-
ment. We used log-scale only on x axis, which represents
the size of a SCC. The spamicity of SCCs except the core
was examined from different level graphs.

We can observe that as the size of a SCC increases, the
hostname length and spam keyword ratio also increase. This
indicates that most SCCs with relatively large size (espe-
cially, over 100) have very high spamicity. This agrees with
the result of [7]. As for SCCs in deep level graphs, al-
though overall spamicity decreased, large SCCs still have
high spamicity. Some large SCCs with low spamicity ap-
peared, so we assessed them manually and found out they
are spam. For example, in the right graphs in Figure 5 and
6, large SCCs in 2004 show very low spamicity. However,
after the investigation, we found out hostnames in these
SCCs are also spam, which are very short and consist of a
series of spam keywords without any non-alphabetic char-
acters(e.g. "www.dvdporno.net"). As for data of 2006 with
short hostname length and relatively low spamicity, mem-
bers with short host names either including meaningless dig-
its and characters like "www.ib5.x1024.com", or containing
only spam keywords appeared. Table 8 shows the number
of SCCs with over 100 hosts and the number of hosts in
them.

To confirm whether the tendency that large SCC are very
likely to be a spam structure continues in the depth of the
core, we investigated SCCs whose size over 100 in from level

4.3 Strongly Connected Components of
WEBSPAM-UK Dataset

We applied SCC decomposition on WEBSPAM-UK dataset
(see Section 3) , and results are very different from those of
Japanese dataset. In Table 10, we can see the fraction of
nodes in the largest SCCs are larger than those of Japanese
datasets, and the size of other SCCs are far smaller than
100.

In WEBSPAM-UK2006, we found out 21 SCCs whose
cardinality is 10 or more are suspicious. Hosts in those
SCCs are classified with existing labels. Manual classifi-
cation is also performed using Wayback machine [19] data
of a correspondent period, if a host is labeled as ”unde-
cided” or is not labeled. As a result, we verified that 230
among 293 hosts in level 1 SCCs with size 10 or more are
spam. We found a two link farms where most members
are labeled as normal. One of them contained 14 hosts
of a online shopping mall which uses different domains for
each category. The other contains 38 hosts and all of them
referred to used-car shopping and have similar hostnames
like "www.used-fordcars.co.uk", "www.used-suzukicars.
co.uk", "www.used-daewoo-cars.co.uk". If we regard these
two link farms as a spam, total 282 host among 293 hosts
are spam. In addition to this, both level 1 and level 2, the
largest SCCs except the core are composed of spam hosts.

Figure 7 shows the percentage of hosts labeled as spam
in each SCC of a different size. As the Figure shows, some
large SCCs have relatively low spamicity. These SCCs are
the link farms that we explained.



Figure 2: Connectivity of level 1 and level 2 SCCs in 2004

Figure 3: Connectivity of level 1 and level 2 SCCs in 2005

Figure 4: Connectivity of level 1 and level 2 SCCs in 2006

WEBSPAM-UK2007 data is very different from 2006 dataset

in size and connectivity. Although the size of 2007 dataset
is about ten times larger than that of 2006, we found that
2007 dataset consists of many smaller SCCs. The size of the
second largest SCC was 8, which is much smaller than that
of 2006.

4.4 Evolution of Link Farms

After we confirmed that a large SCC is likely to be a
spam farm, the evolution of SCCs of the entire host graph
over time was examined.

We observed changes in the size of a SCC and computed
the growth rate of it. We follow the evolution metrics of
web communities from [5], but we use SCCs instead of web
communities.

In this paper, we consider the growth and shrinkage of

strongly connected components. Some notations are intro-
duced for this.

t1,t2,...,tn : Time when each archive crawled. Time unit
of our archives is a year.

C(tr) : SCC at time tg.

N(C(tx)) : Size or cardinality of a SCC. The number of
hosts in a SCC is used.

In order to understand how a single SCC, C(¢x), has
evolved, we find out a SCC corresponding to C(tx) at time
ti—1. This corresponding SCC C(tr—1) is a SCC that shares
the most members with SCC, C(tx). In case multiple SCCs
exist at ¢x_1 which share the same number of members with
C(tx), we select the largest SCC as the corresponding SCC.
The pair of (C(tx),C(tk—1)) is called a mainline.
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We observed the change in size and the growth rate of
mainlines from 2004 to 2005, and from 2005 to 2006. The
growth rate of C(¢x) is defined as N(C(tr))/N(C(tk—1)).

Figure 8 and 11 show the change in the SCC size dur-
ing a year, and Figure 9 and 12 show the growth rate of
the SCC size. In all Figures, we can notice the size of most
SCCs is stable. Size stability of the SCC becomes stronger
as the size of a SCC increases. Considering that most large

SCCs are a spam structure, we can expect that a spam farm
hardly expands. Note that a few large SCCs shrink signif-
icantly, which can be observed in the right-bottom side of
Figure 8 and 9. Such decrease in the size could occur
when spammers abandon their link farm and consequently
the densely connected SCCs split into small ones. More link
farms would shrink in reality, since we ignored hosts that
disappeared from our host graphs. If we consider disap-
peared hosts during one year, the shrinkage trend becomes
clearer.

Interestingly, we confirmed that the growth rate of rela-
tively small SCCs (from 10 to 100 nodes) follows Gibrat’s
law. That is, the growth rate of a SCC is independent of its
previous size. Gibrat’s law have been observed from firm-
size growth in economics, and recently some relationships
between the power-law distribution of firm size and Gibrat’s
law is confirmed in [20].

For further understanding of the evolution of spam struc-
tures, we investigated the previous size ratio of large SCCs,
N(C(tk-1))/N(C(tr)) for N(C(tr)) is over 100. Results are
illustrated in Figure 10 and 13 where x axis represents the
previous size ratio and y axis represents the number of SCC.
Peaks are observed at size ratio 0 and 1, and ratio 0 means
all members of C(t;) were newly appeared at ti, or C(tx)
was emerged from a very small SCC. This suggests that most
of large link farms existed in the last year, or emerged in one
year.



5. SUMMARY

In this paper, we studied the overall link-based spam struc-
ture and its evolution from a time series of a large scale Web
snapshot. These results could be useful for eliminating ma-
jor link farms, and designing robust Web analysis methods.
First, we proposed recursive SCC decomposition with node
filtering for extracting denser and deeper link farms in the
core. We showed that in each iteration, almost all large
SCCs that contain more than 100 nodes turned out to be
a link farm, and surprisingly we could find link farms af-
ter pruning large amount of small degree nodes. Using this
method, we could extract about from 4.3% to 7.2% of hosts
in all years as link farms.

We also examined the change in the size and the growth
rate of SCCs over two years to understand the evolution of
spam structures. Results show that most large link farms,
which are very likely to be spam, did not grow anymore
while some of them shrunk, and many large link farms are
created within one year. This means that tracking emerging
growth of small SCCs is more important than tracking large
link farms.

In our experiments, we used rather small subsets of the
entire Web, and the crawling interval is still quite long.
We are planning to apply our methods to more global Web
archives and to crawl the Web more frequently to observe
finer-grained evolution.
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