Tag Spam Creates Large Non-Giant Connected Components

Nicolas Neubauer (1), Robert Wetzker (2) & Klaus Obermayer (1)
Neural Information Processing Group (1), DAI Lab (2)
Technische Universität Berlin
AIRWeb@WWW’09, 21.4.2009
Overview

1. Spam in Social Bookmarking Systems
2. Hyperincident Connected Components
4. Conclusions
Social Tagging
Edges: Top 2000 similarities between top 800 documents (no spam) - Bibsonomy
Some tag spam targets search engines
- Top entry for a given tag might indicate relevance
Other tag spam targets users
- Sites with certain tags might lure users into visiting them
- Spammers behave so radically different it shows in the resulting network structures

Edges: Top 2000 similarities between top 800 documents (spam) - Bibsonomy
Overview

1. Spam in Social Bookmarking Systems
2. Hyperincident Connected Components
4. Conclusions
Hyperincident Connectivity

- Tagging data can be interpreted as a hypergraph, defined by hyperedges \((d,u,t)\) for a document \(d\) being tagged with tag \(t\) by a user \(u\).
- Two edges are incident if they share a node (i.e., \(d\), \(u\), or \(t\)).
 - In all examined datasets, everything was basically connected to everything.
- Definition: Two edges are 2-hyperincident if they share at least two nodes.
- 2-hyperincident connected components:
 Components of edges between paths of 2-hyperincident edges exist.

Blue, dotted lines indicate incident edges

Blue, dotted lines indicate 2-hyperincident edges
Expanding 2-hyperincident edges around a user

- Starting from a legitimate user, we had to stop at a limit of discovered nodes (here: 2000)
- Starting from spam users, we often found closed sets of connected nodes
- We did not find such components for legitimate users
Distribution of Component Sizes

(a) Bibsonomy (green: without spam)
(b) CiteULike

(c) Delicious
(d) AOL

x=number of components of size y (log/log)

Neubauer & Obermayer: Hyperincident Connected Components of Tagging Networks, HyperText 2009, in press
Distribution of Large Components’ Sizes

(a) Bibsonomy (green: without spam) (b) CiteULike

(c) Delicious (d) AOL

x = rank of component, y = number of edges in component
Spam Detection

- Users in nlc/gcc are likely to be spammers/non-spammers
- Are spammers/non-spammers also likely to live in nlc/gcc?
 - Yes
 - although many users from both classes do neither.

- Simple classification heuristic:
 - If user is only in nlc -> spam = 1
 - If user is only in gcc -> spam = 0
 - otherwise -> spam = 0.5
 - Note that users can be in more than one component

- Area under ROC curve (AUC - balanced accuracy) of .73
Largest and Next-largest 2-HCC for one Month of Delicious Tags
Overview

1. Spam in Social Bookmarking Systems
2. Hyperincident Connected Components
4. Conclusions
Doubting Hyper-Incident Connectivity

• “Nice result, but probably mostly based on documents”

• Short story: Right.
 – Long story: Tags do have a bit of influence here.

• Question: What happens if we examine connectivity on the document/user graph, ie edges=(d,u) for (d,u,t) in hypergraphs?
 – And what happens if we do the same for the tag/user graph?
Connectivity Structure (Bibsonomy)

- We see a the distribution of component sizes in the user/document graph closely resembles the one found in the entire hypergraph.
- The tag/document graph is mostly connected.
User Distribution

- Accordingly, membership information on the user/document graph is comparably informative, while the tag/document graph is useless.
Spam Detection

New spam detection experiments:

- applied above heuristic on document/user graph (red)
- compared to original approach (black)
- new heuristic (blue):
 new maximum spam score for users being in nlc in both graphs
- also examined effect of #documents/user

Results:

- Hypergraph and document/user graph connectivity provide similar, but sometimes complementary information
- Entire approach works better when users have more documents

ROC curves for all three heuristics

<table>
<thead>
<tr>
<th>min # docs/user</th>
<th>0</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>User/Document</td>
<td>0.73</td>
<td>0.78</td>
<td>0.81</td>
<td>0.84</td>
</tr>
<tr>
<td>User/Tag</td>
<td>0.49</td>
<td>0.49</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Hypergraph</td>
<td>0.73</td>
<td>0.78</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>Combined</td>
<td>0.76</td>
<td>0.81</td>
<td>0.87</td>
<td>0.91</td>
</tr>
</tbody>
</table>

AUC values
Overview

1. Spam in Social Bookmarking Systems
2. Hyperincident Connected Components
4. Conclusions
Final Results & Discussion

Requirements

<table>
<thead>
<tr>
<th>Feature extraction on Previous Labels resources or references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content analysis</td>
</tr>
<tr>
<td>Reference analysis</td>
</tr>
<tr>
<td>User Similarity</td>
</tr>
<tr>
<td>Structural Analysis</td>
</tr>
</tbody>
</table>

- Accuracy decreases, but so do domain dependence and requirements on available information
- Addition to other, more specialized approaches
- Stand-alone baseline when more specialized approaches are not available
- Although a large part of connectivity is related to documents, tags do play a subtle role.
- Next: Exploring temporal evolution & even stricter notions of connectivity