Web Spam Filtering in Internet Archives

Miklós Erdélyi1, András A. Benczúr1, Dávid Siklósi1
Julien Masanès2

1Hungarian Academy of Sciences (MTA SZTAKI)
Data Mining and Web Search Group

2European Archive Foundation, France
Part I: Archival Institutions

- Web archives: 39 institutions under International Internet Preservation Consortium (IIPC) and more
- Loose collaboration, code and technology sharing
- Operated usually from moderate budget
- Effort sharing is crucial
Web spam in Archives

- Slightly different policies
 - May want to archive spam to preserve whole picture
 - Might be worried more about false positives
 - Will perhaps not serve general search queries to users
- But increasingly affected by spam becoming more and more costly if not fought against:
 - 10+% of sites, near 20% of HTML pages
- We have conducted a survey...
Survey results (1)

- Participants: 20 archival institutions from all around the Globe
 - National and other libraries
 - Library of Congress
 - National Library of Denmark
 - ...
 - Internet Archive
 - Documentation Centre for Dutch Political Parties
 - Virtual Knowledge Studio
 - ...
 - “Is spam or fake Web content a problem in your crawling and capturing process?”
 - Yes (39%)
 - No problem (4%)
 - Only 1 respondent expects no problem by spam even in the future
 - The type of spam met by archives, counter measures ...
Survey results (2)

• “If you do meet spam during capturing, of what type is that spam?”

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blog comment spam</td>
<td>20% (2)</td>
</tr>
<tr>
<td>Link farms</td>
<td>50% (5)</td>
</tr>
<tr>
<td>Copied content</td>
<td>60% (6)</td>
</tr>
<tr>
<td>Garbage content</td>
<td>70% (7)</td>
</tr>
</tbody>
</table>

• “If spam has impact on your Web archiving process, what actions do you undertake?”

<table>
<thead>
<tr>
<th>Action</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>We drop pages with spam or fake content</td>
<td>18,20% (2)</td>
</tr>
<tr>
<td>We drop sites with spam or fake content</td>
<td>45,50% (5)</td>
</tr>
<tr>
<td>We apply filters to avoid such noise</td>
<td>54,50% (6)</td>
</tr>
<tr>
<td>After capturing we manually correct the crawl</td>
<td>27,30% (3)</td>
</tr>
<tr>
<td>We see no options to avoid noise</td>
<td>27,30% (3)</td>
</tr>
</tbody>
</table>
Survey results (3)

• Low resources on spam filtering but...
• “If you undertake actions to diminish the spam problem in the Web archive of your institute, can you estimate how much you invest in this?”
 • “difficult to estimate”
 • “I would spend perhaps 3 or 4 days creating lists of seeds to filter out of the forthcoming crawl.”
 • “10 minutes - 1 hour per site”
 • “We use 2-5 minutes per website when going through the list of potential spam sites.”
 • “We do not do anything to edit captured content. We foresee that this would not scale, and that it would invite questions about the archive’s authenticity.”
Archive specific needs

- Filtering
 - Analyze and train by a “bootstrap” crawl
 - Filter newly appeared hosts crawl time
 - Aid manual assessment (active learning)
- Collaboration
 - Aid information and label sharing
 - Use a filter model trained possibly at another institution
 - Catch spam farms that span more top level domains
Part II: Spam hunting in Archives

- Dataset
 (WEBSPAM-UK snapshots)
- Temporal features
- Results
Dataset

- 13 UbiCrawler .uk snapshots
Temporal features (1)

- Transformations - without generating new features
 - Normalization: centralized feature values
 - Variance of feature values across snapshots
- Content change
 - Simple bag-of-words model
 - Similarity between two snapshots
 - Aggregated by average, maximum and variance
- Classification stability
 - On average, how easy it is to classify the given host?
Sample histograms

- Host-level standard deviation of top 200 corpus recall
- Average host content similarity in the bag of words model
- Variance of the probability of correctly predicted spamicity
Results (1)

- Using “public” content features, classification by C4.5

- Related feature sets:

<table>
<thead>
<tr>
<th>Setup</th>
<th>Challenge</th>
<th>New host</th>
<th>2006 → 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training set size</td>
<td>1,201</td>
<td>4,000</td>
<td>10,662</td>
</tr>
<tr>
<td>Public content</td>
<td>0.753</td>
<td>0.699</td>
<td>0.730</td>
</tr>
<tr>
<td>BOW</td>
<td>0.619</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stability</td>
<td>0.776</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Variance</td>
<td>0.618</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Results (2)

- Combination by log-odds averaging based random forest:

<table>
<thead>
<tr>
<th>Combinations</th>
<th>Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content + BOW</td>
<td>0.729</td>
</tr>
<tr>
<td>Content + stability</td>
<td>0.766</td>
</tr>
<tr>
<td>Content + variance</td>
<td>0.726</td>
</tr>
<tr>
<td>Content + BOW + stability + variance</td>
<td>0.777</td>
</tr>
</tbody>
</table>

- **Conclusion**: temporal change based features seem to be useful by these preliminary experiments
Questions?

Miklós Erdélyi

datamining.sztaki.hu/
miklos@ilab.sztaki.hu