
SIGIR 2006 Workshop on

Adversarial Information Retrieval on the Web
AIRWeb 2006

Proceedings of the Second International Workshop on
Adversarial Information Retrieval on the Web – AIRWeb 2006

29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 10 August 2006, Seattle, Washington, USA.

Edited by

Brian D. Davison

Department of Computer Science and Engineering, Lehigh University

Marc Najork

Microsoft Research

Tim Converse

Yahoo! Search

Technical Report LU-CSE-06-027, Department of Computer Science and Engineering,
Lehigh University, Bethlehem, PA, 18015 USA.

Microsoft is a registered trademark of Microsoft Corporation. Yahoo! is a registered trademark of Yahoo, Inc.

AIRWeb 2006 Program
The Second International Workshop on Adversarial Information Retrieval on the Web

10 August 2006

 9:00 Welcome

 9:10 Link-Based Characterization and Detection of Web Spam
 Luca Becchetti, Carlos Castillo, Debora Donato, Stefano Leonardi,
 Università di Roma "La Sapienza", and Ricardo Baeza-Yates,
 Yahoo! Research Barcelona

 9:40 Tracking Web Spam with Hidden Style Similarity
 Tanguy Urvoy, Thomas Lavergne and Pascal Filoche, France Telecom R&D

10:10 Web Spam Detection with Anti-Trust Rank
 Vijay Krishnan and Rashmi Raj, Stanford University

10:30 Break

11:00 Invited Talk on Sponsored Search
 Jan Pedersen, Yahoo!

12:30 Lunch

 1:30 Adversarial Information Retrieval Aspects of Sponsored Search
 Bernard J. Jansen, Pennsylvania State University

 1:50 Link-Based Similarity Search to Fight Web Spam
 András A. Benczúr, Károly Csalogány and Tamás Sarlós,
 Hungarian Academy of Sciences and Eötvös University

 2:20 Improving Cloaking Detection using Search Query Popularity and Monetizability
 Kumar Chellapilla and David Maxwell Chickering, Microsoft Live Labs

 3:00 Break

 3:30 Expert Panel on Blog Spam
Tim Converse, Yahoo! Search,
Dennis Fetterly, Microsoft Research,
Natalie Glance, Nielsen BuzzMetrics,
Jeremy Hylton, Google,
Greg Linden, Findory, and
Paul Querna, Ask

 5:00 Discussion and Final remarks

 iii

Contents

Welcome iv

Overview v

Workshop Organizers vi

Contributing Authors, Speakers, and Panelists vii

Full Papers

Link-Based Characterization and Detection of Web Spam 1
Luca Becchetti, Carlos Castillo, Debora Donato, Stefano Leonardi & Ricardo Baeza-Yates

Link-Based Similarity Search to Fight Web Spam 9
András A. Benczúr, Károly Csalogány and Tamás Sarlós

Improving Cloaking Detection using Search Query Popularity and Monetizability 17
Kumar Chellapilla and David Maxwell Chickering

Tracking Web Spam with Hidden Style Similarity 25
Tanguy Urvoy, Thomas Lavergne and Pascal Filoche

Synopses

Adversarial Information Retrieval Aspects of Sponsored Search 33
Bernard J. Jansen

Web Spam Detection with Anti-Trust Rank 37
Vijay Krishnan and Rashmi Raj

 iv

Welcome

Dear Participant:

Welcome to the Second International Workshop on Adversarial Information Retrieval on the
Web (AIRWeb). This workshop brings together researchers and practitioners that are concerned
with the on-going efforts in adversarial information retrieval on the Web, and builds on last
year's successful meeting in Chiba, Japan as part of WWW2005.

Out of the thirteen submissions to this year’s workshop, we have a total of six peer-reviewed
papers to be presented – four research presentations and two synopses of work in progress,
conveying the latest results in adversarial web IR. In addition, we are pleased to have an invited
talk on sponsored search by Jan Pedersen of Yahoo! and a panel session with experts on blog
spam, including: Dennis Fetterly (Microsoft Research), Natalie Glance (Nielsen BuzzMetrics),
Jeremy Hylton (Google), Greg Linden (Findory), Andrew Tomkins (Yahoo! Research) and a
representative to be determined from Ask.com. Workshop participants are encouraged to raise
additional questions of interest to industry experts and researchers.

We extend our thanks to the authors and presenters, to the expert panelists and invited speaker,
and to the members of the program committee for their contributions to the material that forms
an outstanding workshop. It is our hope that you will find the presented work to be stimulating
and that you will ask questions, contribute ideas, and perhaps get involved in future work in this
area.

Brian D. Davison, Marc Najork, and Tim Converse
AIRWeb 2006 Program Chairs

 v

Overview

The attraction of hundreds of millions of web searches per day provides significant incentive for
many content providers to do whatever is necessary to rank highly in search engine results, while
search engine providers want to provide the most accurate results. The conflicting goals of
search and content providers are adversarial, and the use of techniques that push rankings higher
than they belong is often called search engine spam. Such methods typically include textual as
well as link-based techniques, or their combination.

AIRWeb 2006 provides a focused venue for both mature and early-stage work in web-based
adversarial IR. The workshop solicited technical papers on any aspect of adversarial information
retrieval on the Web. Particular areas of interest included, but were not limited to:

• search engine spam and optimization,
• crawling the web without detection,
• link-bombing (a.k.a. Google-bombing),
• comment spam, referrer spam,
• blog spam (splogs),
• malicious tagging,
• reverse engineering of ranking algorithms,
• advertisement blocking, and
• web content filtering.

Papers addressing higher-level concerns (e.g., whether 'open' algorithms can succeed in an
adversarial environment, whether permanent solutions are possible, etc.) were also welcome.

Authors were invited to submit papers and synopses in PDF format. We encouraged
submissions presenting novel ideas and work in progress, as well as more mature work.
Submissions were reviewed by a program committee of search experts on relevance,
significance, originality, clarity, and technical merit and accepted papers cover state-of-the-art
research advances to address current problems in web spam.

 vi

Workshop Organizers

Program Chairs

Brian D. Davison, Lehigh University
Marc Najork, Microsoft Research
Tim Converse, Yahoo! Search

Program Committee Members

Sibel Adali, Rensselaer Polytechnic Institute, USA
Lada Adamic, University of Michigan, USA
Einat Amitay, IBM Research Haifa, Israel
Andrei Broder, Yahoo! Research, USA
Carlos Castillo, Università di Roma "La Sapienza", Italy
Abdur Chowdhury, AOL Search, USA
Nick Craswell, Microsoft Research Cambridge, UK
Matt Cutts, Google, USA
Dennis Fetterly, Microsoft Research, USA
Zoltan Gyongyi, Stanford University, USA
Matthew Hurst, Nielsen BuzzMetrics, USA
Mark Manasse, Microsoft Research, USA
Jan Pedersen, Yahoo!, USA
Bernhard Seefeld, Switzerland
Erik Selberg, Microsoft Search, USA
Bruce Smith, Yahoo! Search, USA
Andrew Tomkins, Yahoo! Research, USA
Tao Yang, Ask.com/Univ. of California-Santa Barbara, USA

 vii

Contributing Authors, Speakers, and Panelists

Ricardo Baeza-Yates, Yahoo! Research Barcelona

Luca Becchetti, Università di Roma "La Sapienza"

András A. Benczúr, Hungarian Academy of Sciences and Eötvös University

Carlos Castillo, Università di Roma "La Sapienza"

Kumar Chellapilla, Microsoft Live Labs

David Maxwell Chickering, Microsoft Live Labs

Tim Converse, Yahoo! Search

Károly Csalogány, Hungarian Academy of Sciences and Eötvös University

Debora Donato, Università di Roma "La Sapienza"

Dennis Fetterly, Microsoft Research

Pascal Filoche, France Telecom R&D

Natalie Glance, Nielsen BuzzMetrics

Jeremy Hylton, Google

Bernard J. Jansen, Pennsylvania State University

Vijay Krishnan, Stanford University

Thomas Lavergne, France Telecom R&D

Stefano Leonardi, Università di Roma "La Sapienza"

Greg Linden, Findory

Jan Pedersen, Yahoo!

Rashmi Raj, Stanford University

Tamás Sarlós, Hungarian Academy of Sciences and Eötvös University

Tanguy Urvoy, France Telecom R&D

 viii

Link-Based Characterization and Detection of Web Spam∗

Luca Becchetti1

becchett@dis.uniroma1.it
Carlos Castillo1

castillo@dis.uniroma1.it
Debora Donato1

donato@dis.uniroma1.it

Stefano Leonardi1

leon@dis.uniroma1.it
Ricardo Baeza-Yates2

ricardo@baeza.cl

1 DIS - Università di Roma “La Sapienza”
Rome, Italy

2 Yahoo! Research
Barcelona, Spain & Santiago, Chile

ABSTRACT
We perform a statistical analysis of a large collection of Web
pages, focusing on spam detection. We study several met-
rics such as degree correlations, number of neighbors, rank
propagation through links, TrustRank and others to build
several automatic web spam classifiers. This paper presents
a study of the performance of each of these classifiers alone,
as well as their combined performance. Using this approach
we are able to detect 80.4% of the Web spam in our sample,
with only 1.1% of false positives.

1. INTRODUCTION
The term “spam” has been commonly used in the In-

ternet era to refer to unsolicited (and possibly commercial)
bulk messages. The most common form of electronic spam
is e-mail spam, but in practice each new communication
medium has created a new opportunity for sending unso-
licited messages. There are many types of electronic spam
nowadays including spam by instant messaging (spim), spam
by internet telephony (spit), spam by mobile phone, by fax,
etc. The Web is not absent from this list.

The request-response paradigm of the HTTP protocol makes
it impossible for spammers to actually “send” pages directly
to the users, so the type of spam that is done on the Web
takes a somewhat different form than in other media. What
spammers do on the Web is to try to deceive search engines,
a technique known as spamdexing.

1.1 Web spam
The Web contains numerous profit-seeking ventures that

are attracted by the prospect of reaching millions of users at
a very low cost. A large fraction of the visits to a Web site
originate from search engines, and most of the users click on
the first few results in a search engine. Therefore, there is an
economic incentive for manipulating search engine’s listings
by creating pages that score high independently of their real
merit. In practice such manipulation is widespread, and
in many cases, successful. For instance, the authors of [9]

∗Supported by the EU Integrated Project AEOLUS (FET-
15964).

Copyright is held by the author/owner(s).
AIRWEB’06, August 10, 2006, Seattle, Washington, USA.

report that “among the top 20 URLs in our 100 million
page PageRank calculation (. . .) 11 were pornographic, and
these high positions appear to have all been achieved using
the same form of link manipulation”.

One suitable way to define Web spam is any attempt to
get “an unjustifiably favorable relevance or importance score
for some web page, considering the page’s true value” [17].
There is a large gray area between “ethical” Search Engine
Optimization (SEO) and “unethical” spam. SEO services
range from ensuring that Web pages are indexable by Web
crawlers, to the creation of thousands or millions of fake
pages aimed at deceiving search engine ranking algorithms.
Our main criteria to decide in borderline cases is the per-
ceived effort spent by Web authors on providing good con-
tent, versus the effort spent on trying to score high in search
engines.

In all cases, the relationship between a Web site adminis-
trator trying to rank high on a search engine and the search
engine administrator is an adversarial relationship in a
zero-sum game. Every undeserved gain in ranking by the
web site is a loss of precision for the search engine. Fortu-
nately, from the point of view of the search engine, “victory
does not require perfection, just a rate of detection that al-
ters the economic balance for a would-be spammer” [21].

There are other forms of Web spam that involve search
engines. We point out that we do not consider advertising
spam, which is also an issue for search engines that involves
clicks and ads.

1.2 Topological spam (link spam)
A spam page or host is a page or host that is used

for spamming or receives a substantial amount of its score
from other spam pages. There are many techniques for Web
spam [17], and they can be broadly classified into content
(or keyword) spam and link spam.

Content spam includes changes in the content of the
pages, for instance by inserting a large number of keywords [6,
8]. In [21], it is shown that 82-86% of spam pages of this
type can be detected by an automatic classifier. The fea-
tures used for the classification include, among others: the
number of words in the text of the page, the number of hy-
perlinks, the number of words in the title of the pages, the
compressibility (redundancy) of the content, etc.

Unfortunately, it is not always possible to detect spam by
content analysis, as some spam pages only differ from nor-

1

http://www.dis.uniroma1.it/~becchett/
http://www.chato.cl/
http://www.dis.uniroma1.it/~donato/
http://www.dis.uniroma1.it/~leon/
http://www.baeza.cl/

Figure 1: Schematic depiction of the neighborhood
of a page participating in a link farm (left) and a
normal page (right).

mal pages because of their links, not because of their con-
tents. Many of these pages are used to create link farms.
A link farm is a densely connected set of pages, created ex-
plicitly with the purpose of deceiving a link-based ranking
algorithm. Zhang et. al [26] call this collusion, and define
it as the “manipulation of the link structure by a group of
users with the intent of improving the rating of one or more
users in the group”.

A page that participates in a link farm, such as the one
depicted in Figure 1, may have a high in-degree, but lit-
tle relationship with the rest of the graph. Heuristically,
we call spamming achieved by using link farms topological
spamming. In particular, a topological spammer achieves
its goal by means of a link farm that has topological and
spectral properties that statistically differ from those exhib-
ited by non spam pages. This definition embraces the cases
considered in [13], and their method based on “shingles” can
be also applied in detecting some types of link farms (those
that are dense graphs).

Link-based and content-based analysis offer two orthog-
onal approaches. We think that these approaches are not
alternative and should probably be used together.

On one hand, in fact, link-based analysis does not cap-
ture all possible cases of spamming, since some spam pages
appear to have spectral and topological properties that are
statistically close to those exhibited by non spam pages. In
this case, content-based analysis can prove extremely useful.

On the other hand, content-based analysis seems less re-
silient to changes in spammers strategies, in much the same
way that content-based techniques for detecting email spam-
ming are. For instance, a spammer could copy an entire Web
site (creating a set of pages that may be able to pass all tests
for content spam detection) and change a few out-links in
every page to point to the target page. This may be a rel-
atively inexpensive task to perform in an automatic way,
whereas creating, maintaining, reorganizing a link farm, pos-
sibly spanning more than one domain, is economically more
expensive.

1.3 Our contribution
In [3] we used Truncated PageRank (studied in section

3.4) and probabilistic estimation of the number of neighbors
(studied in section 3.5) to build an automatic classifier for
link spam using several link-based features. In this paper,
we are more focused on investigating which (combinations
of) features are good for spam detection, and we try to build
classifiers that can achieve high precision by using a small
set of features.

Table 1: Summary of the performance of the differ-
ent metrics, the ranges in the error rate correspond
to a simple classifier with a few rules, and to a more
complex (but more precise) classifier.

Detection False
Section Metrics rate positives

3.1 Degree (D) 73-74% 2-3%
3.2 D + PageRank (P) 74-77% 2-3%
3.3 D + P + TrustRank 77% 2-3%
3.4 D + P + Trunc. PageRank 77-78% 2%
3.5 D + P + Est. Supporters 78-79% 1-2%
3.6 All attributes 80-81% 1-3%

We are also including several metrics that we have not
considered before for this type of classifier: we test in our
collection TrustRank [18], and we propose the use of degree-
degree correlations, edge-reciprocity and host-based counts
of neighbors. The performance of the different classifiers we
build in this paper is summarized in Table 1.

The results obtained using all the selected attributes are
comparable to those achieved by state-of the art content
analysis for Web spam detection [21]. Again, we recall that
content-based analysis is orthogonal to the approach we con-
sider, and it is likely that the combination of these tech-
niques might prove effective.

The next section introduces the algorithmic framework
and the data set we used. Section 3 presents the different
metrics. The last section presents our conclusions.

2. FRAMEWORK
This section describes the type of algorithms we are in-

terested in, and the data set we are using to evaluate the
effectiveness of the different metrics for spam detection.

2.1 Web graph algorithms
We view our set of Web pages as a Web graph, that

is, a graph G = (V, E) in which the set V corresponds to
Web pages belonging to a subset of the Web, and every link
(x, y) ∈ E corresponds to a hyperlink from page x to page
y in the collection. For concreteness, the total number of
nodes N = |V | is in the order of 1010 [15], and the typical
number of links per Web page is between 20 and 30.

Given the large/huge size of typical data sets used in
Web Information Retrieval, complexity issues play a cru-
cial role. These impose severe restrictions on the computa-
tional and/or space complexity of viable algorithmic solu-
tions. A first approach to modeling these restrictions may
be the streaming model of computation [19]. However,
the restrictions of the classical stream model are too severe
and hardly compatible with the problems we are interested
in.

In view of the above remarks, we decided to restrict to
algorithmic solutions whose space and time complexity is
compatible with the semi-streaming model of computa-
tion [10, 7]. This implies a semi-external memory con-
straint [24] and thus reflects many significant constraints
arising in practice. In this model, the graph is stored on
disk as an adjacency list and no random access is possible,
i.e., we only allow sequential access.

In particular, we assume that we have O(N log N) bits
of main (random access) memory, i.e., in general there is

2

enough memory to store some limited amount of data about
each vertex, but not to store the links of the graph in main
memory. We impose a futher constraint, i.e., the algorithm
should perform a small number of passes over the stream
data, at most O(log N).

We assume no previous knowledge about the graph, so
we do not know a priori if a particular node is suspicious
of being a spam or not. For this reason, there are some
semi-streamed algorithms on a Web graph that we cannot
use for Web spam detection in our framework. If we have
to compute a metric which assigns a value to every vertex,
e.g. a score, we cannot of course afford to run this algorithm
again for every node in the graph, due to the large size of
the data set.

As an example, suppose we want to measure the centrality
of nodes. If we use the streamed version of the standard
breadth-first search (BFS) algorithm, we are not complying
with this requirement, since the outcome would be a BFS
tree for a specific node, which is not enough for computing
the centrality of all the nodes in the graph. Conversely, an
algorithm such as PageRank computes a score for all nodes
in the graph at the same time.

The general sketch of the type of semi-streamed graph
algorithms we are interested, is shown in Figure 2.

Require: graph G = (V, E), score vector S
1: INITIALIZE(S)
2: while not CONVERGED do
3: for src : 1 . . . |V | do
4: for all links from src to dest do
5: COMPUTE(S, src, dest)
6: end for
7: end for
8: POST PROCESS(S)
9: end while

10: return S

Figure 2: Generic link-analysis algorithm using a
stream model. The score vector S represents any
metric, and it must use O(N log N) bits. The number
of iterations should be O(log N) in the worst case.

2.2 Data set
We use a set of pages from the .uk domain, downloaded in

2002 by the Dipartimento di Scienze dell’Informazione, Uni-
versità degli studi di Milano. These collections are publicly
available at http://law.dsi.unimi.it/.

The collection has 18.5 million pages located on 98,452
different hosts. Due to the large size of this collection, we
decided to classify entire hosts instead of individual pages.
This increases the coverage of the sample, but introduces
errors as there are some hosts that consist of a mixture of
spam pages and legitimate contents.

We manually classified a sample of 5,750 hosts (5.9% of
the hosts). For every host, we inspected a few pages manu-
ally and looked at the list of pages collected by the crawler.
Whenever we found a link farm inside the host, we classified
the entire host as spam.

As the amount of spam compared to normal hosts is rela-
tively small, and since we want to focus on the most “dam-
aging” types of spam, we biased our sampling towards hosts
with high PageRank. This is the same approach taken by

other researchers in Web spam detection [4, 18]. In order
to do this, our sample includes the top 200 hosts with the
higher PageRank in their home page, with the higher over-
all PageRank and with the larger number of pages. Other
hosts were added by classifying all the top 200 pages by
hostname length, as several spammers tend to create long
names such as “www.buy-a-used-car-today.example”. For
the same reason, we searched for typical spamming terms
in the host names, and we classified all the hosts with do-
main names including keywords such as mp3, mortgage, sex,
casino, buy, free, cheap, etc.

We discarded from the sample the hosts that no longer
were available (about 7%), and classified the rest in one of
the following three classes:

Spam (16%): The host is clearly a link farm; or it is
spamming by using several keywords in the host, directory
or file names; or it includes no content apart from links to
a target page or host.

Normal (81%): The host is clearly not a link farm, but
a normal site (in the jargon of e-mail spam detection, non-
spam items are sometimes called “ham”).

Suspicious (3%): Borderline cases, including illegal busi-
ness (on-line gambling, pharmaceuticals without prescrip-
tion) and pornography, as they are usual customers of link
farms. We also included in this category sites that almost
(but not entirely) provide content copied from other sources
plus advertising, affiliate networks, advertising servers, and
groups of entire sites that share the same template with little
added information.

Table 2 shows the number of hosts and pages in each class.
Note that as the sample is biased toward spam pages, it
cannot be used to infer the overall prevalence of Web spam
in this collection. Also, given that we biased our sampling
towards hosts with a large number of pages, our sample has
only 5.9% of the hosts but covers about 5.8 million pages or
30% of the pages in the collection.

Table 2: Relative sizes of the classes in the manually-
classified sample. The last row gives the fraction of
classified hosts and pages over the entire collection.
Class Hosts Pages

Spam 840 16% 329 K 6%
Normal 4,333 81% 5,429 K 92%
Suspicious 171 3% 118 K 2%
Total 5,344 (5.8%) 5,877 K (31.7%)

For the class labels provided to the algorithms in the auto-
matic classification experiments, we adopted a conservative
approach and included the suspicious hosts in the normal
class.

One final remark about the data set is in order. The Web
is a moving target and no spam research paper can have a
spam classification whose Web content and structure (links)
date to the same time as when the training set classification
was done. This can negatively affect the results returned by
any classifier for two main reasons:
- A site may not be spam today but it may have been spam
in the past. In this case there is the risk of wrong detection
of this site as spam and hence the number of false positives
will increase.

3

http://law.dsi.unimi.it/

- A site may be spam today but may not have been in the
past. In this case we may not detect the site as spam and
hence the number of false negatives will increase.

So, regardless of the technique used, our results may un-
derestimate the false positives and negatives (so in both
cases these are lower bounds). This implies that the de-
tection rate we are giving is an upper bound.

2.3 Automatic classification
This paper describes several link-based features that are

used to build automatic classifiers. We used the Weka [25]
implementation of decision trees: binary trees in which each
internal node is an inequality (for instance: “if feature A
is less than 10, and feature B is greater than 0.2, then the
host is spam”). Describing here the algorithm for building
automatically these classifiers is not possible due to space
limitations, for a description see [25].

The evaluation of the classifiers was performed by a ten-
fold cross-validation of the training data. The data is first
divided into 10 approximately equal partitions, then each
part is held out in turn for testing, and the classifier is
trained using the remaining 9 folds. The overall error es-
timate is the average of the 10 error estimates on the test
folds.

We also used boosting [12], which builds 10 different clas-
sifiers, assigning a different weight to each element after each
classification, depending on whether the element was cor-
rectly classified or not. The resulting classifier is a linear
combination of the individual weighted classifiers.

For each set of features we build two classifiers. We first
limit the number of rules, by imposing a lower bound on the
number of hosts in each leaf of the decision tree (this is the
parameter M in the implementation of Weka). In our case,
M = 30 hosts, roughly 5% of them. We then build another
classifier by using no pruning and generating as many rules
as possible as long as there are at least M = 2 hosts per
leaf.

Evaluation: the error metrics for the evaluation are based
on precision and recall [2] for the spam detection task. The
main measures we use are:

Detection rate =
of spam sites classified as spam

of spam sites

False positives =
of normal sites classified as spam

of normal sites
.

The full list of features we used is provided in the ap-
pendix. Note that neither the length of the host names, nor
their keywords, nor the number of pages were included as
features for the automatic classifiers.

3. METRICS
Fetterly et al. [11] hypothesized that studying the dis-

tribution of statistics about pages could be a good way of
detecting spam pages, as “in a number of these distribu-
tions, outlier values are associated with web spam”. In this
section we consider several link-based metrics, whose com-
putation uses algorithms that are feasible for large-scale Web
collections. These are not all possible statistics that can be
computed, for a survey of Web metrics, see [5].

From pages to hosts. All the metrics in this section
are metrics about individual Web pages. To apply them to

sites we measured them for the home page of the site (this is
the page in the root directory, or the page with the shortest
file name on each host). We computed these metrics for the
page with the maximum PageRank. In our sample, these
pages are the same in only 38% of the cases, so it is rather
common that the highest ranked page on a site is not the
home page.

Actually, in 31% of the normal hosts these pages are the
same, while for the spam hosts in 77% of the cases the pages
are the same. In a normal Web site, the pattern of the
linking to the pages in the host are not controlled by its
owner, so even if the home page is more “visible”, any page
has a certain chance of becoming popular. In the case of
a spam host, we are assuming that the spammer controls a
large fraction of the in-links, so he has an incentive to try to
boost its home page instead of an arbitrary page inside the
host.

3.1 Degree-based measures
The distribution of in-degree and out-degree can be ob-

tained very easily doing a single pass over the Web graph.
In Figure 3 we depict the histogram of this metric over the
normal pages and the spam pages. In this section we present
several graphs such as Figure 3, in which the histogram is
shown with bars for the normal pages and with lines for the
spam pages. Both histograms are normalized independently,
and the y-axis represents frequencies.

1 100 10000
0

0.1

0.2

0.3

0.4

Number of in−links

In−degree δ = 0.35

 Normal
 Spam

1 10 50 100
0

0.1

0.2

0.3

Number of out−links

Out−degree δ = 0.28

 Normal
 Spam

Figure 3: Histogram of the degree of home pages.

We have also included a parameter δ representing how
different the histograms are. The value δ ∈ [0, 1] is based
on the Kolmogorov-Smirnov test to verify if two distribu-
tions are the same, and is the maximum difference of the
cumulative distribution functions (not shown here due to
lack of space). The larger the value, the more different the
distributions are.

In the case of in-degree we are using logarithmic binning,
and the distribution seems to follow a power-law for normal
pages, as the number of elements in each bin are similar. In
the case of spam hosts, there is a large group of about 40%
of them that have an in-degree in a very narrow interval.
Something similar happens in the diagram of out-degree,
but the difference between normal and spam pages is not as
significant.

Another degree-based metric is the edge-reciprocity,
that measures how many of the links in the directed Web
graph are reciprocal. The edge-reciprocity can be computed
easily by simultaneously scanning the graph and its trans-
posed version, and measuring the overlap between the out-
neighbors of a page and its in-neighbors.

In Figure 4 (left) we can see that the pages with maximum
PageRank of the spam hosts, tend to have abnormally low

4

0 0.2 0.4 0.6 0.8 1

0.01

0.1

0.2

0.3
0.4
0.5

Fraction of reciprocal links

Reciprocity of max. PR page δ = 0.35

 Normal
 Spam

0.001 0.01 0.1 1 10 100 1000
0

0.1

0.2

0.3

0.4

Degree/Degree ratio of home page

Degree / Degree of neighbors δ = 0.31

 Normal
 Spam

Figure 4: Left: histogram of the edge reciprocity
in the page with maximum PageRank. Right: his-
togram of degree/degree ratio for home pages.

reciprocity in our sample. In the case of home pages (not
shown) the difference is not very large.

The degree of the nodes induces a natural “hierarchy” that
can be used to define different classes of nodes. A network in
which most nodes are connected to other nodes in the same
class (for instance, most of the connections of highly-linked
are to other highly-linked nodes) is called “assortative”
and a network in which the contrary occurs is called “dis-
assortative”. The distinction is important from the point
of view of epidemics [16].

We measured for every host in our sample the ratio be-
tween its degree and the average degree of its neighbors (con-
sidering both in- and out-links). In Figure 4 (right) we can
see that in our collection, there is a mixing of assortative
and disassortative behavior. The home pages of the spam
hosts tend to be linked to/by pages with relatively lower in-
degree. In our case, there is a peak at 10, meaning that for
that group, their degree is 10 times larger than the degree
of their direct neighbors.

All of the measures in this section can be computed in
one or two passes over the Web graph (and the transposed
graph). Using only these attributes (17 features in total) we
build two spam classifiers, as explained in section 2. Using
them we can identify from 72.6% to 74.4% of the spam hosts
with a false positive rate from 2.0% to 3.1%.

3.2 PageRank
Let AN×N be the citation matrix of graph G, that is,

axy = 1 ⇐⇒ (x, y) ∈ E. Let PN×N be the row-normalized
citation matrix, such that all rows sum up to one, and rows
of zeros are replaced by rows of 1/N . PageRank [22] can be
described as a functional ranking [1], that is, a link-based
ranking algorithm that computes a scoring vector S of the
form:

S =
∞

X

t=0

damping(t)

N
Pt .

where damping(t) is a decreasing function of t, the lengths of
the paths. In particular, for PageRank the damping function
is exponentially decreasing, namely, damping(t) = (1−α)αt.

We plot the distribution of the PageRank values of the
home pages in Figure 5 (left). We can see a large fraction
of pages sharing the same PageRank. This is more or less
expected as there is also a large fraction of pages sharing the
same in-degree (although these are not equivalent metrics).

An interesting observation we obtained is that in the case
of home pages the distribution seems to follow a power-law
(in the graph of Figure 5 the bins are logarithmic), while

1e−08 1e−07 1e−06 1e−05 0.0001
0

0.1

0.2

0.3

PageRank

PageRank of Home Page δ = 0.18

 Normal
 Spam

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

σ2 of the logarithm of PageRank

Stdev. of PR of Neighbors (Home) δ = 0.41

 Normal
 Spam

Figure 5: Left: histogram of the PageRank in the
home page of hosts. Right: dispersion of PageRank
values in the in-neighbors of the home pages.

for the pages with maximum PageRank on each host, the
distribution seems to be log-normal. This deserves further
studying in the future.

Following an idea by Benczúr et al. [4], we studied the
PageRank distribution of the pages that contribute to the
PageRank of a given page. In [4], this distribution is studied
over a sample of the pages that point recursively to the tar-
get page (with a strong preference for shorter paths), while
here we study the distribution of the PageRank of the di-
rect in-neighborhood of a page only. The result is shown in
Figure 5 (right), and it is clear that for most of the spammers
in our sample, it is more frequent to have less dispersion in
the values of the PageRank of the in-neighbors.

Automatic classifiers built with the attributes we have
described in this section (28 features in total), can identify
from 74.4% to 77.3% of the spam hosts with a false positive
rate of 1.7% to 2.6%.

3.3 TrustRank
In [18] the TrustRank algorithm for trust propagation is

described: it starts with a seed of hand-picked trusted
nodes and then propagates their score by following links.
The intuition behind TrustRank is that a page with high
PageRank, but without relationship with any of the trusted
pages, is suspicious.

The spam mass of a page is defined as the amount of
PageRank received by that page from spammers. This quan-
tity cannot be calculated in practice, but it can be estimated
by measuring the estimated non-spam mass, which is the
amount of score that a page receives from trusted pages. For
the purpose of this paper we refer to this quantity simply as
the TrustRank score of a page.

For calculating this score, a biased random walk is car-
ried out on the Web graph. With probability α we follow
an out-link from a page, and with probability 1 − α we go
back to one of the trusted nodes picked at random. For
the trusted nodes we used data from the Open Directory
Project (available at http://rdf.dmoz.org/), selecting all
the listed hosts inside the .uk domain. As of April 2006,
this includes over 150,000 different hosts, from which 32,866
were included in our collection. Out of these, we have tagged
2,626 of them as normal hosts and 21 as spam. We removed
those spam sites from the seed set (we also made some tests
keeping them and the difference was not noticeable).

As shown in Figure 6, the score obtained by the home page
of hosts in the normal class and hosts in the spam class is
very different. Also, the ratio between the TrustRank score

5

http://rdf.dmoz.org/

1e−06 0.001
0

0.1

0.2

0.3

0.4

TrustRank

TrustRank score of home page δ = 0.59

 Normal
 Spam

0.3 1 10 100

0.01

0.1

0.2
0.3
0.4
0.50.60.70.8

TrustRank score/PageRank

Estimated relative non−spam mass δ = 0.59

 Normal
 Spam

Figure 6: Left: histogram of TrustRank scores of
home pages. Right: histogram of the estimated rel-
ative non-spam mass.

and the PageRank (the estimated relative non-spam mass)
is also very effective for separating spam from normal pages.

Using degree correlations, PageRank and TrustRank as
attributes (35 features in total), we built classifiers with de-
tection rates from 77.0% to 77.3% and 1.8% to 3.0% of false
positives.

3.4 Truncated PageRank
In [3] we described Truncated PageRank, a link-based

ranking function that decreases the importance of neigh-
bors that are topologically “close” to the target node. In
[26] it is shown that spam pages should be very sensitive to
changes in the damping factor of the PageRank calculation;
in our case with Truncated PageRank we modify not only
the damping factor but the whole damping function.

Intuitively, a way of demoting spam pages is to consider a
damping function that removes the direct contribution
of the first levels of links, such as:

damping(t) =

(

0 t ≤ T

Cαt t > T

Where C is a normalization constant and α is the damping
factor used for PageRank. This function penalizes pages
that obtain a large share of their PageRank from the first few
levels of links; we call the corresponding functional ranking
the Truncated PageRank of a page. The calculation of
Truncated PageRank is described in detail in [3]. There
is a very fast method for calculating Truncated PageRank.
Given a PageRank computation, we can store “snapshots”
of the PageRank values at different iterations and then take
the difference and normalize those values at the end of the
PageRank computation. Essentially, this means that the
Truncated PageRank can be calculated for free during the
PageRank iterations.

Note that as the number of indirect neighbors also de-
pends on the number of direct neighbors, reducing the con-
tribution of the first level of links by this method does not
mean that we are calculating something completely different
from PageRank. In fact, for most pages, both measures are
strongly correlated, as shown in [3].

In practice, we observe that for the spam hosts in our col-
lection, the Truncated PageRank is smaller than the Page-
Rank, as shown in Figure 7 (left). There is a sharp peak
for the spam pages in low values, meaning that many spam
pages loose a large part of their PageRank when Truncated

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

TruncatedPageRank(T=4) / PageRank

TruncatedPageRank T=4 / PageRank δ = 0.33

 Normal
 Spam

0.85 0.9 0.95 1 1.05 1.1
0

0.1

0.2

max(TrPR
i+1

/TrPr
i
)

Maximum change of Truncated PageRank δ = 0.29

 Normal
 Spam

Figure 7: Left: histogram of the ratio between Trun-
catedPageRank at distance 4 and PageRank in the
home page. Right: maximum ratio change of the
TruncatedPageRank from distance i to distance i−1.

PageRank is used. We also found that studying the ratio of
Truncated PageRank at distance i versus Truncated Page-
Rank at distance i−1 also helps in identifying Web spam, as
shown in Figure 7 (right). A classifier using Truncated Page-
Rank, as well as PageRank and degree-based attributes (60
features in total) can identify 76.9% to 78.0% of the spam
hosts with 1.6% to 2.5% of false positives.

3.5 Estimation of supporters
Following [4], we call x a supporter of page y at distance

d, if the shortest path from x to y formed by links in E has
length d. The set of supporters of a page are all the other
pages that contribute to its link-based ranking.

A natural way of fighting link spam is to count the sup-
porters. The naive approach is to repeat a reverse breadth-
first search from each node of the graph, up to a certain
depth, and mark nodes as they are visited [20]. Unfortu-
nately, this is infeasible unless a subset of “suspicious” node
is known a priori. A method for estimating the number of
supporters of each node in the graph is described in [3] which
improves [23].

The general algorithm (described in detail in [3]) involves
the propagation of a bit mask. We start by assigning a
random vector of bits to each page. We then perform an
iterative computation: on each iteration of the algorithm,
if page y has a link to page x, then the bit vector of page
x is updated as x ← x OR y. After d iterations, the bit
vector associated to any page x provides information about
the number of supporters of x at distance ≤ d. Intuitively, if
a page has a larger number of supporters than another, more
1s will appear in the final configuration of its bit vector.

The algorithm is described in detail in [3]. In order to have
a good estimation, d passes have to be repeated O(log N)
times with different initial values, because the range of the
possible values for the number of supporters is very large.
We have observed that counting supporters from distances
d from 1 to 4 give good results in practice. We measured
how the number of supporters change at different distances,
by measuring, for instance, the ratio between the number of
supporters at distance 4 and the number of supporters at
distance 3. The histogram for the minimum and maximum
change is shown in Figure 8 (left).

This algorithm can be extended very easily to consider
the number of different hosts contributing to the ranking
of a given host. To do so, in the initialization the bit masks
of all the pages in the same host have to be made equal. In
Figure 8 (right), we plot the number of supporters at dis-

6

1 5 10
0

0.1

0.2

0.3

0.4

min(S
2
/S

1
, S

3
/S

2
, S

4
/S

3
)

Minimum change of supporters δ = 0.39

 Normal
 Spam

1 100 1000
0

0.1

0.2

0.3

0.4

S
4
 − S

3

Hosts at Distance Exactly 4 δ = 0.39

 Normal
 Spam

Figure 8: Left: histogram of the minimum change in
the size of the neighborhood in the first few levels.
Right: number of different hosts at distance 4

tance 4 considering different hosts contributing towards the
ranking of the home pages of the marked hosts. We observed
anomalies in this distribution for the case of the spam pages,
and these anomalies are more evident by counting different
hosts than by counting different pages.

Considering distance 4, the estimation of supporters based
on pages (62 attributes) yields a classifier with 78.9% to
77.9% of detection rate and 1.4% to 2.5% of false positives.
If we base the estimation on hosts (67 attributes, slightly
more because in-degree is not the number of neighbors at
distance one in this case) allows us to build a classifier for
detecting 76.5% to 77.4% of the spam with an error rate
from 1.3% to 2.4%.

The detection rate is two to three percentage points lower
if distance 2 is considered, with roughly the same false pos-
itives ratio.

3.6 Everything
By combining all of the attributes we have discussed so far

(163 attributes in total), we obtained a better performance
than each of the individual classifiers. The detection rate of
the final classifier is between 80.4% and 81.4%, with a false
positive rate of 1.1% to 2.8% respectively. The first classi-
fier has 40 rules (which provides a robust classifier), while
the second classifier has 175. The performance of our best
classifier can be compared with content-based analysis [21],
which with an equivalent, unrestricted, boosted classifier,
achieves 86.2% of detection rate with 2.2% false positives
using content features.

The ten most important attributes in the complete set
were obtained by using the attribute selection mechanism
of Weka, that samples instances and consider the value of
each attribute in the nearest same-class and different-class
instance:
1. Binary variable indicating if home page is the page with
maximum PageRank of the site
2. Edge reciprocity
3. Supporters (different hosts) at distance 4
4. Supporters (different hosts) at distance 3
5. Minimum change of supporters (different hosts)
6. Supporters (different hosts) at distance 2
7. Truncated PageRank at distance 1 divided by PageRank
8. TrustRank score divided by PageRank
9. Supporters (different hosts) at distance 1
10. Truncated PageRank at distance 2 divided by PageRank

4. CONCLUSIONS AND FUTURE WORK
A first criticism of this study can be that the sample is not

uniform, but is biased towards large Web sites and highly
ranked Web pages. However, a uniform random sample in
this case is much harder to obtain, as it requires to inspect
a larger set of pages, which we can not do by ourselves at
this moment. We are currently collaborating with other re-
searchers in tagging a large uniform sample from a collection
of Web pages.

Our host-based approach also has some drawbacks. For
instance, hosts can have mixed spam/legitimate content. In
any case, we have seen that for several metrics it is impor-
tant to measure the variables in both the home page of the
host and the page with the maximum PageRank. For some
metrics only one of the two pages provides useful informa-
tion for the spam detection technique, and it is not always
the same page. Another approach could be to evaluate each
metric also by taking its average over each Web host. Fi-
nally, a better definition of Web site instead of host would
be useful; for instance, considering multi-site hosts such as
geocities.com as separated entities.

Some authors have hinted that the arms race between
search engines and spammers calls for a serious reconsid-
eration of Web search. For instance, Gori and Witten ar-
gue that “one might try to address speculative Web visibil-
ity scams individually (as search engine companies are no
doubt doing); however, the bubble is likely to reappear in
other guises” [14]. It would be interesting to try to devise
clear rules separating what is allowed and what is not al-
lowed from the point of view of a search engine, instead of
continuing playing “hide and seek” with the spammers. In
an analogy with sport competitions, this set of rules would
define a kind of “anti-doping rules” for Web sites. Our work
contributes towards this goal by suggesting that it is possible
to detect a large fraction of the spammers by analyzing link-
based metrics. Following the analogy, this could be used as
part of an “anti-doping test” for Web pages, which should
involve at least both link-based and content-based analysis.

The source code of the implementation of the algorithms
presented in this paper will be freely available under a GPL
license at http://www.dis.uniroma1.it/∼ae/ for the final
version of the paper, along with our data set of hosts and
their class labels, for repeatability of these results and fur-
ther testing of other web spam detection techniques.

5. REFERENCES
[1] R. Baeza-Yates, P. Boldi, and C. Castillo. Generalizing

PageRank: Damping functions for link-based ranking
algorithms. In Proceedings of SIGIR, Seattle, Washington,
USA, August 2006. ACM Press.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison Wesley, May 1999.

[3] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and
R. Baeza-Yates. Using rank propagation and probabilistic
counting for link-based spam detection. Technical report,
DELIS – Dynamically Evolving, Large-Scale Information
Systems, 2006.

[4] A. A. Benczúr, K. Csalogány, T. Sarlós, and M. Uher.
Spamrank: fully automatic link spam detection. In Proceedings
of the First International Workshop on Adversarial
Information Retrieval on the Web, Chiba, Japan, May 2005.

[5] L. Costa, F. A. Rodrigues, and G. a. Travieso. Characterization
of complex networks: A survey of measurements, Jun 2005.

[6] B. D. Davison. Recognizing nepotistic links on the web. In
Aaai-2000 Workshop On Artificial Intelligence For Web
Search, pages 23–28, Austin, Texas, July 2000. Aaai Press.

7

http://www.dcc.uchile.cl/~ccastill/papers/baeza06_general_pagerank_damping_functions_link_ranking.pdf
http://www.amazon.co.uk/exec/obidos/ASIN/020139829X/citeulike-21
http://delis.upb.de/docs/?details=18102
http://arxiv.org/abs/cond-mat/0505185
http://www.cse.lehigh.edu/~brian/pubs/2000/aaaiws/

[7] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space
for passes in graph streaming problems. In Proceedings of the
7th annual ACM-SIAM Symposium on Discrete Algorithms,
2006.

[8] I. Drost and T. Scheffer. Thwarting the nigritude ultramarine:
learning to identify link spam. In Proceedings of the 16th
European Conference on Machine Learning (ECML), volume
3720 of Lecture Notes in Artificial Intelligence, pages 233–243,
Porto, Portugal, 2005.

[9] N. Eiron, K. S. Curley, and J. A. Tomlin. Ranking the web
frontier. In Proceedings of the 13th international conference
on World Wide Web, pages 309–318, New York, NY, USA,
2004. ACM Press.

[10] J. Feigenbaum, S. Kannan, M. A. Gregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming model. In
31st International Colloquium on Automata, Languages and
Programming, 2004.

[11] D. Fetterly, M. Manasse, and M. Najork. Spam, damn spam,
and statistics: Using statistical analysis to locate spam web
pages. In Proceedings of the seventh workshop on the Web
and databases (WebDB), pages 1–6, Paris, France, June 2004.

[12] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. In International Conference on Machine
Learning, pages 148–156, 1996.

[13] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense
subgraphs in massive graphs. In VLDB ’05: Proceedings of the
31st international conference on Very large data bases, pages
721–732. VLDB Endowment, 2005.

[14] M. Gori and I. Witten. The bubble of web visibility. Commun.
ACM, 48(3):115–117, March 2005.

[15] A. Gulli and A. Signorini. The indexable Web is more than
11.5 billion pages. In Poster proceedings of the 14th
international conference on World Wide Web, pages 902–903,
Chiba, Japan, 2005. ACM Press.

[16] S. Gupta, R. M. Anderson, and R. M. May. Networks of sexual
contacts: implications for the pattern of spread of hiv. AIDS,
3(12):807–817, December 1989.

[17] Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In
First International Workshop on Adversarial Information
Retrieval on the Web, 2005.

[18] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating
web spam with trustrank. In Proceedings of the Thirtieth
International Conference on Very Large Data Bases (VLDB),
pages 576–587, Toronto, Canada, August 2004. Morgan
Kaufmann.

[19] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing
on data streams. Dimacs Series In Discrete Mathematics And
Theoretical Computer Science, pages 107–118, 1999.

[20] R. J. Lipton and J. F. Naughton. Estimating the size of
generalized transitive closures. In VLDB ’89: Proceedings of
the 15th international conference on Very large data bases,
pages 165–171, San Francisco, CA, USA, 1989. Morgan
Kaufmann Publishers Inc.

[21] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting
spam web pages through content analysis. In Proceedings of
the World Wide Web conference, pages 83–92, Edinburgh,
Scotland, May 2006.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: bringing order to the Web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[23] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: a fast
and scalable tool for data mining in massive graphs. In
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
81–90, New York, NY, USA, 2002. ACM Press.

[24] J. S. Vitter. External memory algorithms and data structures.
ACM Computing Surveys, 33(2):209–271, 2001.

[25] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, October 1999.

[26] H. Zhang, A. Goel, R. Govindan, K. Mason, and B. Van Roy.
Making eigenvector-based reputation systems robust to
collusion. In Proceedings of the third Workshop on Web
Graphs (WAW), volume 3243 of Lecture Notes in Computer
Science, pages 92–104, Rome, Italy, October 2004. Springer.

Appendix: Full List of Attributes
Included here for repeatability of the results:

Degree-based, 17 features (section 3.1)
All of the following attributes for the home page and the
page with the maximum PageRank, plus a binary variable
indicating if they are the same page:

- In-degree, out-degree, fraction of reciprocal edges
- Degree divided by degree of direct neighbors
- Average and sum of in-degree of out-neighbors
- Average and sum of out-degree of in-neighbors

PageRank, 28 features (section 3.2)
All of the above, plus the following for the home page and
the page with maximum PageRank:

- PageRank, In-degree/PageRank, Out-degree/PageRank
- Standard deviation of PageRank of in-neighbors = σ2

- σ2/PageRank

Plus the PageRank of the home page divided by the Page-
Rank of the page with the maximum PageRank.

TrustRank, 35 features (section 3.3)
PageRank attributes of section 3.2, plus the following for
the home page and the page with maximum PageRank:

- TrustRank (estimated absolute non-spam mass)
- TrustRank/PageRank, TrustRank/In-degree

Plus the TrustRank in the home page divided by the
TrustRank in the page with the maximum PageRank.

Truncated PageRank, 60 features (section 3.4)
PageRank attributes of section 3.2, plus the following for
the home page and the page with maximum PageRank:

- TruncatedPageRank(T = 1 . . . 4)
- TruncatedPageRank(T = i) / TruncatedPageRank(T =
i− 1)
- TruncatedPageRank(T = 1 . . . 4) / PageRank
- Min., max. and avg. of TruncatedPageRank(T = i) /
TruncatedPageRank(T = i− 1)

Plus the TruncatedPageRank(T = 1 . . . 4) of the home
page divided by the same value in the page with the maxi-
mum PageRank.

Estimation of supporters (section 3.5)
PageRank attributes of section 3.2, plus the following for
the home page and the page with maximum PageRank:

- Supporters at 2 . . . 4 (supporters at 1 is equal to in-degree)
- Supporters at 2 . . . 4 / PageRank
- Supporters at i / Supporters at i − 1 (for i = 1..4)
- Min., max. and avg. of: Supporters at i / Supporters at
i− 1 (for i = 1..4)
- (Supporters at i - Supporters at i − 1) / PageRank (for
i = 1..4). The quantity (Supporters at i - Supporters at
i− 1) is the number of supporters at distance exactly i.

Plus the number of supporters at distance 2 . . . 4 in the
home page divided by the same feature in the page with the
maximum PageRank.

For the estimation of supporters using hosts, the same
attributes but considering that two supporters in the same
host count as only one supporter.

8

http://www.informatik.hu-berlin.de/~scheffer/publications/ecml2005-nigritude.pdf
http://www.mccurley.org/papers/1p309.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/1017074.1017077
http://citeseer.ist.psu.edu/freund96experiments.html
http://portal.acm.org/citation.cfm?id=1083676
http://portal.acm.org/citation.cfm?id=1047715
http://www.di.unipi.it/%7Egulli/papers/f692_gulli_signorini.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed% &dopt=Abstract&list_uids=2517202
http://dbpubs.stanford.edu:8090/pub/2004-25
http://dbpubs.stanford.edu:8090/pub/2004-17
http://portal.acm.org/citation.cfm?id=327766.327782
http://portal.acm.org/citation.cfm?id=88847
http://dx.doi.org/10.1145/1135777.1135794
http://citeseer.ist.psu.edu/page98pagerank.html
http://dx.doi.org/10.1145/775047.775059
http://portal.acm.org/citation.cfm?id=327774
http://www.amazon.de/exec/obidos/ASIN/1558605525
http://www.stanford.edu/~ashishg/papers/WAW_adapt.ps

Link-Based Similarity Search to Fight Web Spam ∗

András A. Benczúr Károly Csalogány Tamás Sarlós
Informatics Laboratory

Computer and Automation Research Institute
Hungarian Academy of Sciences

11 Lagymanyosi u, H-1111 Budapest
and

Eötvös University, Budapest

{benczur, cskaresz, stamas}@ilab.sztaki.hu
www.ilab.sztaki.hu/websearch

ABSTRACT
We investigate the usability of similarity search in fighting Web
spam based on the assumption that an unknown spam page is more
similar to certain known spam pages than to honest pages.

In order to be successful, search engine spam never appears in
isolation: we observe link farms and alliances for the sole purpose
of search engine ranking manipulation. The artificial nature and
strong inside connectedness however gave rise to successful algo-
rithms to identify search engine spam. One example is trust and
distrust propagation, an idea originating in recommender systems
and P2P networks, that yields spam classificators by spreading in-
formation along hyperlinks from white and blacklists. While most
previous results use PageRank variants for propagation, we form
classifiers by investigating similarity top lists of an unknown page
along various measures such as co-citation, companion, nearest
neighbors in low dimensional projections and SimRank. We test
our method over two data sets previously used to measure spam
filtering algorithms.

1. INTRODUCTION
With the advent of search engines web spamming appeared as

early as 1996 [7]. Identifying and preventing spam was cited as one
of the top challenges in web search engines in a 2002 paper [16].
The birth of the highly successful PageRank algorithm [29] was
indeed partially motivated by the easy spammability of the simple
in-degree count; its variants [19; 11; 15; 3; 39; 2, and many others]
proved successful in fighting search engine spam.

Spam and various means of search engine optimization seriously
deteriorate search engine ranking results; as a response, building
black and whitelist belongs to the daily routine of search engine
operation. Our goal is to extend this invaluable source of human
annotation either to automatically demote pages similar to certain
known spam pages or to suggest additional pages for the operator
to be included in the blacklist.

Recently several results has appeared that apply rank propaga-
tion to extend initial trust or distrust judgements over a small set
of seed pages or sites to the entire web. These methods are ei-
ther based on propagating trust forward or distrust backwards along

∗Support from the NKFP 2005 project MOLINGV and by the
Inter-University Center for Telecommunications and Informatics.

Copyright is held by the author/owner(s).
AIRWEB’06, August 10, 2006, Seattle, Washington, USA.

the hyperlinks based on the idea that honest pages predominantly
point to honest ones, or, stated the other way, spam pages are back-
linked only by spam pages. We argue that compared to unidirec-
tional propagation methods, the initial labels are better utilized if
we apply similarity search techniques, which involve a bidirec-
tional backward and forward step.

In this paper we concentrate on spreading trust and distrust infor-
mation from a seed set with the help of hyperlink based similarity
measures. Our main goal is to identify features based on similar-
ities to known honest and spam pages that can be used to classify
unknown pages. We demonstrate the usability of co-citation, Com-
panion [8], SimRank [18] and variants [10] as well as the singular
value decomposition of the adjacency matrix in supervised spam
learning.

Hyperlink based similarity to spam versus honest pages is com-
parable to trust and distrust propagation while giving a natural com-
bination of backward and forward propagation. Given a link farm
alliance [13] with one known target labeled as spam, similarity
based features will automatically label other targets as spam as
well.

As the main result of our paper, we show that over our data set
of the .de domain as well as the.ch domain data in courtesy
of the search.ch engine [33] similarity based single features
perform better than trust or distrust propagation based single fea-
tures at higher recall values. Ironically, the easiest-to-manipulate
co-citation performs best; as an alternate somewhat more robust
against manipulations but performing similarly well we suggest
Companion [8]. Our results are complementary to the recent re-
sults of [2] based on link structure and of [27] based on content
analysis. We leave classification based on the combination of fea-
tures as future work.

2. RELATED RESULTS
Next we survey related results both for hyperlink based spam de-

tection and similarity search. Recently very large number of results
appeared to fight spam; we list just the most relevant ones and point
to references therein.

2.1 PageRank based trust and distrust propa-
gation

When using trust and distrust information, we may propagate
trust forward to pages pointed by trusted ones or distrust backward
to pages that point to spam. In previous results we see all vari-
ants: TrustRank [15, 39] propagates trust forward, BadRank [31,

9

http://www.ilab.sztaki.hu/websearch

9] distrust backward; [38] uses a combination. We describe these
important predecessors of our work next.

As the first trust propagation method against link spam, Gyöngyi
et al. [15] show that spam sites can be pushed down in PageRank
ordering if we personalize on a few trusted hub sites. Their method
is semi automatic, the trusted 180 seed pages were carefully hand
picked from 1250 good hub pages distilled automatically using In-
verse PageRank. Notice that TrustRank requires a very carefully
selected seed set that we cannot provide in our experiment. Wu
et al. [39] describes an improvement of TrustRank by reducing the
bias induced by the seed set. Gyöngyi et al. [12] recognize link
spam by comparing the TrustRank and PageRank values.

Trust and distrust propagation in trust networks originates in
Guha et al. [11] for trust networks; Wu et al. [38] show its ap-
plicability for Web spam classification. As noticed by [11] distrust
propagation is more problematic that that of trust. Although for a
different data type (trust/distrust among Epinions reviewers), they
raise the question of interpreting the distrust of a distrusted party.
While [38] emphasizes the difference between identifying prefer-
ences of a single user and a global notion of trust over the Web,
they also require a combination of trust and distrust propagation to
achieve best results.

As an earlier result, [19] EigenTrust is PageRank with weights
that are trust values. Another method [25] penalizes the bicon-
nected component of a spam page in a subgraph obtained by back-
ward distrust propagation.

2.2 Similarity search, HITS and spam
Several link-based algorithms were designed to evaluate node-

to-node similarities in networks; we refer to [23] for an exhaustive
list of the available methods ranging from co-citation to more com-
plex measures such as max-flow/min-cut-based similarities of [24]
in the vicinity graph of the query. Closest to our notions of link
based similarity is co-citation already used in [11] as an elemen-
tary step of trust propagation.

Dean and Henzinger [8] describe the Companion algorithm that
is reported to outperform co-citation in finding related pages. Their
algorithm computes the authority scores by the HITS algorithm
[20] in the vicinity of the query page.

HITS itself is known to be vulnerable to spam and in particular
to the so-called tightly knit community (TKC) effect. Vulnerabil-
ity to spam, however, makes HITS a good candidate to actually
detect spam when run in the neighborhood of known spam pages
that we explore in our paper. An overview of the theoretical re-
sults underlying the TKC effect is given in Section 7 of [22] and
the references therein that indicate a very weak TKC-type spam re-
sistance of HITS and a somewhat better but still unsatisfying one
of PageRank.

Another example of HITS and spam is the result of Wu and Davi-
son [37]. Unlike our approach of exploiting the spam sensibility of
HITS in prediction, they make HITS spam resistant by identifying a
seed set of link farm pages based on the observation that the in- and
out-neighborhood of link farm pages tend to overlap. Then the seed
set of bad pages is iteratively extended to other pages which link to
many bad pages; finally the links between bad pages are dropped.
Experiments show that a simple weighted in-degree scheme on the
modified graph yields significantly better precision for top ten page
hit lists than the Bharat-Henzinger [5] HITS variant.

Additionally we mention the first example that gives anecdo-
tal evidence for the usability of similarities in hyperlink structure
to identify spam. Amitay et al. [1] extracted features based on
the linkage patterns of web sites and trained a decision tree and
a Bayesian classifier to classify each site to one of the 8 prede-

fined functional categories. A cosine metric based clustering of the
feature space produced a decent amount clusters whose members
appeared to belong to the same spam ring. As it was not the origi-
nal goal of their research, no results were published on classifying
sites as spam or non-spam.

Finally we remark that identifying spam pages is somewhat anal-
ogous to classifying web documents into multiple topics. Several
results [32, and the references therein] demonstrate that classifica-
tion accuracy can be significantly increased by taking into account
the class labels assigned to neighboring nodes. In accordance with
our experiments, Qi and Davison [32] found that most of the im-
provement comes from the neighborhood defined by co-citation.

2.3 Spam data sets and methodology
Before describing our measurements, we elaborate on the hard-

ness of comparing results of different authors and data sets. We
show preliminary results indicating the difficulty of correctly la-
beling spam by human evaluators as well as compare the different
availability of data sets.

While we believe that identifying email spam and certain types
of web content spam by human inspection is relative easy and au-
tomated methods cannot, in any case, perform as good as human
judgement. Search engine spam, however, is much harder to iden-
tify. Györgyi and Garcia-Molina [14] list a few methods that con-
fuse users including term hiding (background color text); cloaking
(different content for browsers and search engine robots) and redi-
rection; some of these techniques can still be found by inspecting
the HTML code within the page source. A few examples of the
.de domain are given in our previous result [3].

In contrast to the hardness of manual spam classification, apart
from our previous result [3] we have no knowledge of investiga-
tions for the reliability of the manual labels. In our experiment [3]
over the.de domain we report a very poor pairwiseκ = 0.45
[6] over the 100 pairs of URLs with judgements by two different
evaluators. The majority of disagreements could be attributed to
different rating of pages in affiliate programs and certain cliques.
This shows that assessing link spam is nontrivial task for humans
as well. Gyöngyi et al. [15] mention “using an author as an evalua-
tor raises the issue of bias in the results” and emphasize the exper-
tise needed for search engine operators that, in our work, have no
access. They also describe the hardness of the task as “manual eval-
uations took weeks: checking a site involves looking at many of its
pages and also the linked sites to determine if there is an intention
to deceive search engines.”

Results on Web spam are in general based on data that needs
careful analysis to replicate and compare. The.uk crawl [2] that
we plan to use in future work is not yet publicly available. Some
of the data such as the MSN crawl [27] is proprietary. Gyöngyi
et al. [15] use an AltaVista crawl together with a proprietary tool
for contracting pages within the same site to a single node prior to
PageRank computation that we only mimic over the.de domain.
While the Stanford WebBase [39] contains pages that are outdated,
manual classification is possible with care through the Wayback
Machine [39]. This is also true for our 2004.de crawl [36] even
though we use a 2005 manual classification [3].

Various top-level or otherwise selected domains may have dif-
ferent spamming behavior; Ntoulas et al. [27] give an invaluable
comparison that show major differences among national domains
and languages of the page. For the.de domain their findings agree
with our 16.5% [3] while for the.uk domain together with Bec-
chetti et al. [2] they report approximately 6%; the latter measure-
ment also reports 16% of sites as spam over.uk .

We also mention the importance of giving more weight to pages

10

of high rank. Similar to our method, [15] uses a stratified random
sample based on PageRank buckets for evaluation. Notice that a
uniform sample would consist of mostly very low rank pages that
would give little information about top ranked pages most impor-
tant in search engine applications.

3. THE SIMILARITY BASED SPAM DETEC-
TION ALGORITHMS

In our experiments we use the four similarity measures co-citation,
SimRank [18], Companion [8] and singular vectors and we suggest
the applicability of further SimRank variants. In this section we
briefly introduce notation and the efficient algorithms [10, 35] that
we use. We give special importance to algorithms with modest
hardware requirements; our experiments ran on a commodity PC.

Similarity based spam prediction is less straightforward than trust
and distrust propagation that directly ranks a page as honest or
spam. Before describing the algorithms we hence describe our
evaluation method. For a given unknown hostu, our algorithm
computes the similarity top list ofu and makes a prediction based
on the known spam and honest hosts in this list. For each similarity
measure we extract four different features from the sizek similarity
top list of u. Let the top list containh honest ands spam pages of
the evaluation sample; in generalh + s < k. Let the sum of the
similarities of these pages bes∗ andh∗, respectively. We define
our features as follows.

• Spam Ratio (SR): fraction of the number of spam within la-
beled spam and honest pages,s/(s + h).

• Spam over Non-spam (SON): number of spam divided by
number of honest pages in the top list,s/h.

• Spam Value Ratio (SVR): sum of the similarity values of
spam pages divided by the total similarity value of labeled
spam and honest pages under the appropriate similarity func-
tion, s∗/(s∗ + h∗).

• Spam Value over Non-spam Value (SVONV): similarity value
sum for spam divided by same for honest,s∗/h∗.

Given the above values, we may impose a threshold and predict the
unknown input page spam if the measure is above the prescribed
threshold. For different thresholds we obtain predictions of differ-
ent quality; by decreasing its value we increase recall and likely but
not necessarily decrease precision. For threshold 0 we predict all
pages as spam with recall 1 and precision equal to the spam fraction
in the data.

3.1 SimRank
Let us consider the web as a graph over hosts by contracting

all individual pages that share a common fully qualified host name
into the same vertex as in [15]. Let there beN vertices and let
hyperlinks define directed edgesE between them. Given nodev
we denote its in- and out-degree byd+(v) andd−(v), respectively.

ThePageRankvectorp = (p1, . . . ,pN) is defined as the solution
of the following equation [29]

pu = (1− c) ·
X

(v,u)∈E

pv/d+(v) + c · ru , (1)

wherer = (r1, . . . , rN) is the teleportation distribution andc is
the teleportation probability with a typical value ofc ≈ 0.15. We
get the PageRank if we set allri to 1/N ; for generalr we get
PageRank personalized onr.

Jeh and Widom [18] define SimRank by the following equation
very similar to the PageRank power iteration: initially Sim(0)(u1, u2) =
1 if u1 = u2 and0 otherwise and then

Sim(i)(u1, u2) =

(
(1− c) ·

P Sim(i−1)
(v1,v2)

d−(u1)·d−(u2)
if u1 6= u2

1 if u1 = u2,
(2)

where the summation is for all pairs(v1, u1) ∈ E, (v2, u2) ∈ E.
SimRank is the multi-step generalization of co-citation in the same
way as PageRank generalizes in-degree.

Given a Web page we predict spam by co-citation and SimRank
based on the similarity top-list over the entire host graph. In the
case of co-citation, the list includes all pages that have a common
back-link; ranking is based on the number of such pages. We com-
pute co-citation by keeping the host graph in internal memory.

SimRank power iterations as in (2) are infeasible since they re-
quire quadratic space; we use the algorithm of [35] instead, with
additive errorε = 0.001 and 10 iterations. We use all non-zeroes
as the top list with sizek. Since in internal steps the algorithm
rounds down to multiples of the error parameter, the choice ofε
determines the value ofk.

Fogaras and Rácz [10] describe two variants PSimRank and XJac-
card by modifying similarity propagation in the above equation
(2); they give randomized approximation algorithms and measure
PSimRank as better predictor of topical similarity than SimRank.
Additionally, the algorithm we use for SimRank can very easily be
modified to take self-similarities into account by relaxing the con-
dition Sim(u1, u2) = 1 and making a page more similar to itself if
similar pages point to it. This modified measure may serve well for
penalizing nepotism; we plan to test variants of self-similarity and
PSimRank in future work.

3.2 Companion and SVD
The Singular Value Decomposition (SVD) of a rankρ matrix

A ∈ Rm×n is given byA = UΣV T with U ∈ Rm×ρ, Σ ∈ Rρ×ρ

and V ∈ Rn×ρ whereΣ is a positive diagonal matrix with the
singular values in the diagonal. By the Eckart-Young theorem the
best rank-t approximation ofA with respect to both the Frobenius
and spectral norms isAt = UtΣtV

T
t , whereUt ∈ Rm×t and

Vt ∈ Rn×t contain the firstt columns ofU andV and the diagonal
Σt ∈ Rt×t contains firstt entries ofΣ.

We use SVD for nearest neighbor search after a low dimensional
projection of the adjacency matrix of the host graph. We represent
hostu by row u of VtΣt and measure similarity as the Eucledian
distance in thist dimensional space. Besides computational advan-
tages, the low dimensional projection also serves noise reduction
in a similar way as Latent Semantic Indexing [30] applies to the
word–document matrix. We perform brute force nearest neighbor
search in thet dimensional space defined byUt and consider the
first 1000 nearest vertices as top list. Given that we use very low
values oft, we could replace brute force search by more elaborate
data structures [34] or approximation [17]; in our case however the
sample was small enough to use the simplest implementation. In
the experiments we use theSVDPACK [4] Lanczos implementation
for computing the first 10 singular vectors.

HITS [20] authority scores are the coordinates of the first (right)
singular vector of the adjacency matrix of the vicinity subgraph.
The idea of using more than just the first singular vector appears in
several results. The instability of a single authority (or hub) vector
and stability of thet dimensional projectionUt is described by [26].

The Companion algorithm [8] builds the 2-step alternating neigh-
borhood of the given vertex; then performs the HITS authority
computation and returns the top authorities. We use a simplified

11

version that excludes steps such as edge weighting, large degree
handling and link order considerations. For a query nodev we
build the vicinity graph by selecting nodes of length two alter-
nating forward-backward of backward-forward paths starting atv.
We randomly truncate large neighborhoods to a maximum of 2000
nodes in the first step and to 10 in the second step, as in [8]. We
rank by the authority score and use all nodes of the vicinity graph
as the top list. HITS is computed by simple power iteration.

4. EXPERIMENTS

4.1 Data sets
We use two data sets, the 31.2 M page crawl of the.de do-

main provided us by Torsten Suel and Yen-Yu Chen and the 20 M
page crawl mostly from the Switzerland domain as courtesy of the
search.ch engine [33]. We apply the evaluation methodologies
of [3] for the .de and the data of [37] for the Switzerland domain
that we review next.

The crawl carried out by the Polybot crawler [36] in April 2004
gives a German graph denser than the usual web graphs with 962 M
edges implying an average out-degree of 30.82. Unlike in our pre-
vious result on the same data [3] we use the host graph not just be-
cause it speeds up experimentation but also because intra-site links
that would give trivial similarity within the same host disappear and
host level detection forms a more interesting task. When forming
the host graph, we are left with a modest 808 K node and 24 M
edge graph.

For the .de data we manually evaluated a stratified random
sample as proposed first in [15]. We ordered the pages accord-
ing to their PageRank value and assigned them to 20 consecutive
buckets such that each bucket contained 5% of the total PageRank
sum. As this step was made for the prior experiment, we computed
PageRank over the page-level graph instead of the host graph; strat-
ification in the sample selection however has no further effect on
our experiments. From each bucket we chose 50 URLs uniformly
at random, resulting in a 1000 page sample heavily biased toward
pages with high PageRank. The sample was manually classified
as described in [3] with judgements reflecting the state as of April
2004. Figure 1 shows1 the distribution of categories among the
hoststhat slightly differ from the page level distribution [3]. Our
prior findings of 16.5% spam among.de pages [3] agrees with
[27] and our increased 20.9% spam on the host level with the simi-
lar findings of [2] for the.uk domain.

The search.ch data is a 2004 crawl of approximately 20 M
pages mostly from the.ch domain. We used the domain graph
with 300 K nodes and 24 M edges reflecting the connectivity of the
two highest levels of the domain hierarchy within this dataset [37].

The 19605 domains appearing in the URL list extracted by Wu
et al. [38] from the Switzerland specific ODP [28] topics formed
our trusted set. As spam set we used a labeled list of 728 do-
mains provided bysearch.ch [33]. One particular property of
this blacklist is that 627 domains share 144 different IP addresses,
the remaining 101 could not be resolved in June 2006. Note that
the Swiss evaluation sample contains 3.6% spam only.

4.2 Evaluation by cross-validation
We evaluate our methods together with trust and distrust propa-

gation baselines by three-fold cross-validation. We observe very
large variance between various random cross-validation splits, a
phenomenon that we show for a single feature instance in Fig. 2

1 Unless stated otherwise all figures in this section refer to the.de
dataset.

Weborg 0.2%

Ad 1.0%

77.9 %

Reputable

Spam 20.9%

Figure 1: Distribution of categories among the hosts in the eval-
uation sample

but holds for all features. The explanation likely lies in the small
size of our sample: given a query page, the success of spam classi-
fication heavily depends on whether those possibly very few pages
that contain relevant information are used for test or training.

Given the large variance, we show or measurements by averaging
cross-validation results with five independent random splits that al-
together correspond to 15 measurements, three for each split. Since
in the 15 measurements we will have precision values for different
values of recall and we may have several precision values for a
given recall, we need special care to average our measurement.

We average our measurements by extrapolating precision for a
given recall from measured values. For a single measurement we
obtain precision–recall value pairs by imposing different thresh-
olds. By decreasing the threshold we increase recall; increment
is however in discrete steps that changes whenever the threshold
reaches new hosts. If we reach a single host that is spam, both
precision and recall increases by certain amount; we may then lin-
early extrapolate between the recall at the boundaries. If the new
host is honest, we obtain a new, smaller precision value for the pre-
vious recall; we average all these values for a single experiment
before averaging between measurements. Given ties, we classify
more than a single host that makes recall increase and precision
change according to the fractionα of spam among the new hosts.
For a given intermediate recall we may then interpolate by adding a
(possible fractional) number of pages with a fractionα of spam and
computing precision. This method reduces to linear interpolation
for a single new spam page withα = 1 but nonlinear otherwise.

4.3 Baseline results
For baseline experiments we use the trust and distrust propaga-

tion measures of Wu et al. [38] by personalizing host based Page-
Rank on known honest vs. spam hosts. We reproduce results of
these experiments as Wu et al. [38] choose methods other than
precision-recall curves for evaluation. We use the following vari-
ants described by [38]. In a single personalized PageRank itera-
tion we may use constant splitting or logarithm splitting instead of
equal splitting. We also use the maximum share variant by replac-
ing summation by maximum in the PageRank equation. We leave
the maximum parent variant of [38] for future work; we hence test
6 variants, including the original BadRank corresponding to simple

12

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

Figure 2: The outcome of five threefold cross-validation results
with various random splits, for co-citation with SVR, altogether
corresponding to measurement points over 15 precision-recall
curves.

summation equal splitting in the terminology of [38].
We experiment with different values of teleportation probability

c. This value has negligible effect on the best measures as seen in
Fig. 3. Other measures depend more heavily onc and reach best
performance in general with lowc. Since it has no effect on the
comparison of methods we use a uniformc = 0.1 afterwards.

Our best trust and distrust propagation measurements are shown
in Fig. 4, all withc = 0.1. Unmodified BadRank (equal split, sum-
mation) performs best at lowest recall but outperformed by equal
split maximum share later. Logarithm split maximum share per-
forms slightly worse but still outperforms the remaining three vari-
ants. Due to insufficient trust information, trust propagation per-
forms very poor and often even below the random 20.9%, meaning
that most spam manages through in cheating our TrustRank. Only
the best original TrustRank (equal split, summation) is shown.

As suggested in [38], we improve results by combining trust and
distrust propagation. We use linear combinations; surprisingly the
best results are achieved by subtracting 0.8 times the trust score
from 0.2 times the distrust score. Results for using the previous
three best distrust score and the single best TrustRank is shown
in Fig. 5. Hence although TrustRank performs bad alone due to
insufficient trust information in our.de data, still its vote gives
significant help to distrust propagation.

Over thesearch.ch dataset unmodified BadRank and loga-
rithm split with simple summation performed best, their graphs are
shown in Fig. 11.

4.4 Similarity based features
We use features with abbreviations SR, SON, SVR and SVONV

as described in Section 3. For all four Figs. 6–9 we see bad pre-
cision at low recall, suggesting that honest pages may also collect
high ranked similar spam that may be the result of artificial rank
manipulations that is left for future work to verify.

Our methods perform best at relative high recall; finally con-
verges to the random choice of 20.9% spam among hosts for very
high recall. We see SR–SVR and SON–SVONV values in pairs
performing very close. The first pair performs better at medium
recall; the second pair performs poor in general but has a peak at
higher recall where outperforms the first pair.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50

Pr
ec

is
io

n

Recall

0.1
0.4
0.6
0.9

Figure 3: Precision as a function of recall for distrust propaga-
tion with logarithm splitting and maximum share. Four differ-
ent values of teleportation probability c are shown.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

badrank
equal_max

log_max
trustrank

Figure 4: Precision as a function of recall for the best three dis-
trust propagation variants and the single best TrustRank trust
propagation.

Co-citation (Fig. 6) turns out best even at relative high recall val-
ues with Companion (Fig. 7) as the runner up. Our observations on
the relative ordering of individual features and similarity functions
hold unchanged over the Swiss dataset as well, hence we report
figures only for the German data.

While our most successful candidate, notice the very easy spamma-
bility of the co-citation measure. As described by [21] we have to
resist both false negative attacks of hiding spam as well as false
positive ones that demote the competitor. Co-citation suffers the
same vulnerability against spammers as in-degree: a spammer can
easily create a large number of honey pot hosts that co-cite quality
pages along with the spam target. By adding hosts that point to an
honesth and a spam hosts, we increase the chance of votingh
spam ands honest.

Although SimRank (Fig. 8) performs poorest, it is the most ro-
bust measure against manipulations. In order to modify SimRank,
the spammer must use a large number of pages that lead to both
the spam targets and an honest pageh. Depending on the Page-

13

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

combined equal_sum
combined equal_max

combined log_max

Figure 5: Precision as a function of recall for combined 0.8
times trust and 0.2 times distrust propagation.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

son
sr

svonv
svr

Figure 6: Precision as a function of recall for the four co-
citation features.

Rank ofh it is very unlikely that paths backward fromh meet those
from s that would mean high SimRank betweenh ands. Replacing
SimRank with a better performing variant remains future work.

4.5 Comparison of best features
Finally in Fig. 10 we show all features that perform best for cer-

tain ranges of recall. BadRank is very effective at penalizing spam
only but its recall is very low. Combined 0.2 times distrust mi-
nus 0.8 times trust propagation extends BadRank’s performance,
for the price of slightly decreased precision, to somewhat higher
recall. Finally co-citation seems most effective for prediction with
high recall. We also show Companion in Fig. 10 as the next best
candidate if we disqualify co-citation due to its manipulability.

Turning to the Swiss dataset depicted in Fig. 11 we observe that
distrust propagation with the unmodified BadRank algorithm or
logarithm split and simple summation performs on par with Com-
panion. As before, co-citation is the most precise measure with
the exact feature depending on the level of recall. However over-
all accuracy is significantly higher than those observed for the.de
domain. We attribute this to the (undisclosed) method(s) applied

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

son
sr

svonv
svr

Figure 7: Precision as a function of recall for the four compan-
ion features.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

son
sr

svonv
svr

Figure 8: Precision as a function of recall for the four SimRank
features.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

son
sr

svonv
svr

Figure 9: Precision as a function of recall for the four SVD
nearest neighbor features.

14

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Pr
ec

is
io

n

Recall

badrank
equal_max distrust

equal_max combined
cocit svonv

companion svr
cocit svr

Figure 10: Precision as a function of recall for the best features.

 0

 20

 40

 60

 80

 100

 55 60 65 70 75 80 85 90 95 100

Pr
ec

is
io

n

Recall

badrank
log_simple distrust

cocit svonv
cocit svr

companion svr
ip_svr

Figure 11: Precision as a function of recall for the best features
on the Swiss domain graph.

by search.ch [33] to assemble the blacklist. For example, as
already noted in Section 4.1, a large number of link farms share the
same IP address. Hence a simple similarity measure based on the
equality of IP addresses associated with the domains also works
reasonably well. As shown on Fig. 12 accuracy decreases if we
keep only a single domain for each IP address in the evaluation
sample.

5. CONCLUSIONS
We presented hyperlink similarity based single feature classifi-

cation measurements over a manually classified sample of the.de
domain and thesearch.ch datasets. Our experiments demon-
strated that similarity search based methods are indeed capable of
learning the difference between spam and non-spam pages. In fur-
ther work more SimRank variants and the combination of several
features can be measured, including content based statistical fea-
tures identified by Ntoulas et al. [27]; for combination decision
trees as well as SVM should be used. Moreover, akin to [32] it
needs to be investigated whether the accuracy of content based
spam classifiers can be boosted by incorporating estimates assigned
to similar nodes. In addition, the quality of the sample should be

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

Recall

badrank
log_simple distrust

cocit svonv
cocit svr

companion svr

Figure 12: Precision as a function of recall for the best features
on the Swiss domain graph with unique IP addresses.

improved by additional manual classification effort as well as other
data sets should be involved in the measurement.

6. ACKNOWLEDGEMENT
The authors would like to thank Torsten Suel and Yen-Yu Chen

for providing the.de web graph and Urban Müller and Baon-
ing Wu and Brian D. Davison for the preprocessedsearch.ch
dataset.

7. REFERENCES
[1] E. Amitay, D. Carmel, A. Darlow, R. Lempel, and A. Soffer.

The Connectivity Sonar: Detecting site functionality by
structural patterns. InProceedings of the 14th ACM
Conference on Hypertext and Hypermedia (HT), pages
38–47, Nottingham, United Kingdom, 2003.

[2] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and
R. Baeza-Yates. Link-based characterization and detection of
web spam. InProceedings of the 2nd International Workshop
on Adversarial Information Retrieval on the Web (AIRWeb),
2006.

[3] A. A. Benczúr, K. Csalogány, T. Sarlós, and M. Uher.
SpamRank – Fully automatic link spam detection. In
Proceedings of the 1st International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb),
2005.

[4] M. W. Berry. SVDPACK: A Fortran-77 software library for
the sparse singular value decomposition. Technical report,
University of Tennessee, Knoxville, TN, USA, 1992.

[5] K. Bharat and M. R. Henzinger. Improved algorithms for
topic distillation in a hyperlinked environment. In
Proceedings of SIGIR-98, 21st ACM International
Conference on Research and Development in Information
Retrieval, pages 104–111, Melbourne, AU, 1998.

[6] J. Carletta. Assessing agreement on classification tasks: the
kappa statistic.Computational Linguistics, 22(2):249–254,
1996.

[7] C. Chekuri, M. H. Goldwasser, P. Raghavan, and E. Upfal.
Web search using automatic classification. InProceedings of
the 6th International World Wide Web Conference (WWW),
San Jose, USA, 1997.

15

[8] J. Dean and M. R. Henzinger. Finding related pages in the
World Wide Web. InProceedings of the 8th World Wide Web
Conference (WWW), pages 1467–1479, 1999.

[9] I. Drost and T. Scheffer. Thwarting the nigritude ultramarine:
learning to identify link spam. InProceedings of the 16th
European Conference on Machine Learning (ECML),
volume 3720 ofLecture Notes in Artificial Intelligence,
pages 233–243, Porto, Portugal, 2005.

[10] D. Fogaras and B. Rácz. Scaling link-based similarity search.
In Proceedings of the 14th World Wide Web Conference
(WWW), pages 641–650, Chiba, Japan, 2005.

[11] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of trust and distrust. InProceedings of the 13th
International World Wide Web Conference (WWW), pages
403–412, 2004.

[12] Z. Gyöngyi, P. Berkhin, H. Garcia-Molina, and J. Pedersen.
Link spam detection based on mass estimation. In
Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB), Seoul, Korea, 2006.

[13] Z. Gyöngyi and H. Garcia-Molina. Link spam alliances. In
Proceedings of the 31st International Conference on Very
Large Data Bases (VLDB), Trondheim, Norway, 2005.

[14] Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In
Proceedings of the 1st International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb),
Chiba, Japan, 2005.

[15] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating
web spam with TrustRank. InProceedings of the 30th
International Conference on Very Large Data Bases (VLDB),
pages 576–587, Toronto, Canada, 2004.

[16] M. Henziger, R. Motwani, and C. Silverstein. Challenges in
web search engines.SIGIR Forum, 36(2):11–22, 2002.

[17] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In
Proceedings of the 30th ACM Symposium on Theory of
Computing (STOC), pages 604–613, 1998.

[18] G. Jeh and J. Widom. SimRank: A measure of
structural-context similarity. InProceedings of the 8th ACM
International Conference on Knowledge Discovery and Data
Mining (SIGKDD), pages 538–543, 2002.

[19] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
EigenTrust algorithm for reputation management in P2P
networks. InProceedings of the 12th International World
Wide Web Conference (WWW), pages 640–651, New York,
NY, USA, 2003. ACM Press.

[20] J. Kleinberg. Authoritative sources in a hyperlinked
environment.Journal of the ACM, 46(5):604–632, 1999.

[21] S. K. Lam and J. Riedl. Shilling recommender systems for
fun and profit. InProceedings of the 13th International
World Wide Web Conference (WWW), pages 393–402, New
York, NY, USA, 2004. ACM Press.

[22] A. N. Langville and C. D. Meyer. Deeper inside PageRank.
Internet Mathematics, 1(3):335–400, 2004.

[23] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. InProceedings of the 12th
Conference on Information and Knowledge Management
(CIKM), pages 556–559, 2003.

[24] W. Lu, J. Janssen, E. Milios, and N. Japkowicz. Node
similarity in networked information spaces. InProceedings
of the Conference of the Centre for Advanced Studies on
Collaborative research, page 11, 2001.

[25] P. T. Metaxas and J. Destefano. Web spam, propaganda and
trust. InProceedings of the First International Workshop on
Adversarial Information Retrieval on the Web, 2005.

[26] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link analysis,
eigenvectors and stability. InProc. Int. Joint Conf. Artificial
Intelligence, Seattle, WA, August 2001.

[27] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly.
Detecting spam web pages through content analysis. In
Proceedings of the 15th International World Wide Web
Conference (WWW), pages 83–92, Edinburgh, Scotland,
2006.

[28] Open Directory Project (ODP).http://www.dmoz.org .
[29] L. Page, S. Brin, R. Motwani, and T. Winograd. The

PageRank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford University, 1998.

[30] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and
S. Vempala. Latent semantic indexing: A probabilistic
analysis. InProocedings of the ACM Conference on
Principles of Database Systems (PODS), pages 159–168,
1998.

[31] PR10.info. BadRank as the opposite of PageRank, 2004.
http://en.pr10.info/pagerank0-badrank/
(visited June 27th, 2005).

[32] X. Qi and B. D. Davison. Knowing a web page by the
company it keeps. Technical Report LU-CSE-06-011,
Lehigh University, 2006.

[33] Räber Information Management GmbH. The Swiss search
engine, http://www.search.ch/, 2006.

[34] H. Samet.The design and analysis of spatial data structures.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1990.

[35] T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and
B. Rácz. To randomize or not to randomize: Space optimal
summaries for hyperlink analysis. InProceedings of the 15th
World Wide Web Conference (WWW), 2006.

[36] T. Suel and V. Shkapenyuk. Design and implementation of a
high-performance distributed web crawler. InProceedings of
the 18th IEEE International Conference on Data
Engineering (ICDE), pages 357–368, San Jose, California,
USA, 2002.

[37] B. Wu and B. D. Davison. Identifying link farm pages. In
Proceedings of the 14th International World Wide Web
Conference (WWW), pages 820–829, Chiba, Japan, 2005.

[38] B. Wu, V. Goel, and B. D. Davison. Propagating trust and
distrust to demote web spam. InWorkshop on Models of
Trust for the Web, Edinburgh, Scotland, 2006.

[39] B. Wu, V. Goel, and B. D. Davison. Topical TrustRank:
Using topicality to combat web spam. InProceedings of the
15th International World Wide Web Conference (WWW),
Edinburgh, Scotland, 2006.

16

Improving Cloaking Detection Using Search Query
Popularity and Monetizability

Kumar Chellapilla
Microsoft Live Labs
One Microsoft Way

Redmond, WA, USA 98052
+1 (425) 707-7575

kumarc@microsoft.com

David Maxwell Chickering
Microsoft Live Labs
One Microsoft Way

Redmond, WA, USA 98052
+1 (425) 703-5426

dmax@microsoft.com

ABSTRACT
Cloaking is a search engine spamming technique used by some
Web sites to deliver one page to a search engine for indexing
while serving an entirely different page to users browsing the site.
In this paper, we show that the degree of cloaking among search
results depends on query properties such as popularity and
monetizability. We propose estimating query popularity and
monetizability by analyzing search engine query logs and online
advertising click-through logs, respectively. We also present a
new measure for detecting cloaked URLs that uses a normalized
term frequency ratio between multiple downloaded copies of Web
pages. Experiments are conducted using 10,000 search queries
and 3 million associated search result URLs. Experimental results
indicate that while only 73.1% of the cloaked popular search
URLs are spam, over 98.5% of the cloaked monetizable search
URLs are spam. Further, on average, the search results for top 2%
most cloaked queries are 10x more likely to be cloaking than
those for the bottom 98% of the queries.

1. INTRODUCTION
Cloaking is a hiding technique [11] used by some Web servers to
deliver one page to a search engine for indexing while serving an
entirely different page to users browsing the site. In short,
cloaking is the classic “bait and switch” technique applied to the
Web. The motivation behind cloaking is to distort search engine
rankings in favor of the cloaked page. Cloaking is commonly used
in conjunction with other Web spamming techniques. Spammers
can present the ultimately intended content to the Web users
(without traces of spam on the page), and, at the same time, send
a spammed document to the search engine for indexing.

In order for cloaking to be effective, the Web server must be able
to detect Web crawler clients reliably. This is typically achieved
by examining the client’s: (a) user-agent string, and (b) IP
address. A Web server can identify the Web client using the user-
agent header in the HTTP request message. A few examples of
user-agent strings are:

Internet Explorer:
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

MSNBot:
msnbot/1.0 (+http://search.msn.com/msnbot.htm)

GoogleBot:
Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

However, the user-agent strings are not strictly standardized and it
is really up to the requesting application what to include in the
corresponding message field. For example, it is common for less
popular Web browsers to mimic the user-agent strings of the
dominant browser to ensure a consistent browsing experience.
Nevertheless, search engine crawlers do identify themselves by a
name distinct from the ones used by traditional Web browser
applications.

A very reliable way of identifying the client requesting a Web
page is through its IP address. Some spammers maintain lists of
IP addresses used by search engines and identify Web crawlers
based on their matching IPs. These IP lists are easily available
online and are frequently updated.

The differences between the Web pages served to the search
engine crawler vs the user typically include: (a) making some text
on the page invisible (e.g. white-on-white, very small font size),
(b) using style-sheets to hide text, (c) using javascript to alter
page content when loaded in the Web browser, and (d) use of
javascript or “meta-refresh” to redirect the user to another page.

Since anyone can be an author on the Web, cloaking practices
naturally create a question of information reliability. Users
accustomed to trusting print media (newspapers and books) may
not be able, prepared or willing to think critically about the
information obtained from the Web [10]. As a result, most Web
search engines do not approve of cloaking and will permanently
ban such sites from their databases.

In this paper, we investigate the distribution of cloaking based
Web spam over two different query categories, namely popularity
and monetizability. Popularity of a query is proportional to the
frequency of occurrence in the search query logs. Monetizability
can be defined to be proportional to the number of user clicks or
the amount of revenue generated by user clicks on sponsored ads
(paid advertisements) served alongside search results. Most major
search engines serve online ads and keep track of their usage
statistics. We mine these logs to obtain popularity and
monetizability scores for search queries. In this paper, these

Copyright is held by the author/owner(s).

AIRWeb'06, August 10, 2006, Seattle, Washington, USA.

17

scores are used only to extract the top N queries from search and
ad logs.

Section 2 presents some background on Web spam, online
advertising, and cloaking. We argue that attracting online users to
commercial Web sites for the purposes of increasing their
monetization is a significant source of Web spam. Query
popularity and monetizability are introduced in Section 3 along
with strategies for combating Web spam. Sections 4 and 5 present
cloaking detection experiments and their results. Section 6
concludes with a brief discussion of the experimental results
presented in this paper and potential future work.

2. BACKGROUND AND RELATED WORK
2.1 Adversarial Aspects of Web Spam
One common definition of Web spam [9,11] is: “A Web page
created for the sole purpose of attracting search engine referrals
(to this page or some other “target” page).” Owing to such a broad
definition, classifying a Web page as spam is inherently
ambiguous. In many cases, determining whether a Web page is
spam (or not) is ultimately a judgment call. For example, some
Web pages have very little useful content, are badly formatted,
and are borderline useless, but are not spam. Some other pages
look fine in isolation, but in context are clearly spam.

Several approaches based on statistical analysis and machine
learning have been proposed for detecting spam pages [4,9,12,
14,19-20]. However, none of them are guaranteed to succeed
against all spammers. When search engines counteract Web spam
using these approaches, they simply escalate the arms race: the
approaches work for a short period of time while the spammers
move to more successful and newer strategies.

Detecting Web spam is inherently an adversarial problem. Static
machine learning based approaches do not do well against such
adversarial problems. Spam classifiers need to be updated often or
should be capable of learning online. Online learning requires a
constant source of labeled data which can be expensive. Web
spam is similar to other common adversarial problems such as e-
mail spam and computer viruses that are contained but are not
likely to be solved in the near future. The best systems
continuously monitor performance and frequently update
themselves.

2.2 Motivation behind Web Spam
Search engine optimization (SEO) is a legitimate way to improve
traffic to commercial sites. The preferred approach is to ensure
that the search engine spider can find and index the site and to
improve overall site quality by offering added value to online
users. Online advertising can be used to further improve traffic,
but requires extra capital investment.

Most major search engines sell advertising keywords. Vendors
can bid directly on these advertising keywords and have their
commercial links served alongside search results. When search
engines serve sponsored ads, they are clearly marked so that users
can tell them apart from search results easily. Web spammers on
the other hand act as intermediaries and sell search ranks for
specific queries to businesses [12]. These ranks are achieved
through various spamming techniques. Since these commercial
sites are ranked inline with the other genuine search engine
results, online users cannot tell them apart.

The overall motivation for most Web spamming approaches is
monetizability. Simple conversion ratios such as impression-to-
click and click-to-sale numbers determine how profitable an
online business is. Many businesses can increase business revenue
simply by increasing traffic to their site (all else being the same).
The difference between white hat and black hat SEOs is mostly a
difference of means rather than the ends. However, exceptions do
exist. For example, Google bombers1 [6] may not be completely
motivated by money. However, we believe that non-monetary
motivations for Web spam are secondary and as a result not as
wide spread.

Similar monetizability arguments have been a rich source of
robust approaches for fighting e-mail spam [3,7]. Understanding
the monetization strategies of common Web spammers and
designing approaches that increase their operating costs is a
promising approach to combating Web spam.

2.3 Internet Advertising and the Generalized
Second Price Auction
The search engine is not only a tool for searching the Web, but
also an advertising platform for ones business and services of
companies. Search engines sell online advertising through an
auction process where advertisers bid for specific keywords and
phrases. A brief description of the Generalized Second Price
(GSP) auction [8] is presented below:

When a Web user enters a search query into a search engine, he
gets back a page with results, containing both the links most
relevant to the query and the sponsored links, i.e., paid
advertisements. The presentation ensures that ads are clearly
distinguishable from the actual search results. Different searches
yield different sponsored links. Advertisers target their ads based
on query keywords and/or phrases. For instance, if a travel agent
buys the word “Hawaii,” then each time a user performs a search
on this word, a link to the travel agent will appear on the search
results page. When a user clicks on the sponsored link, he is sent
to the advertiser’s Web page. The user click constitutes a referral
to the advertiser from the search engine. The advertiser then pays
the search engine for referring the user, hence the name—“pay-
per-click” pricing.

The number of ads that the search engine can show to a user is
limited, and different positions on the search results page have
different desirabilities for advertisers. Preliminary eye tracking
studies indicate a triangular region (Golden Triangle) of
maximum visibility on the search results page [21]. The golden
triangle is a right angled triangle aligned along the top of the first
search result and the left side of the results page. It extends from
the left top of the results page over to the top of the first result,
then down to a point on the left side about three quarters of the
way down the page. Generally, this area includes top sponsored
links, top organic results and alternative results, including
shopping, news or local suggestions. An ad shown at the top of a
page is more likely to be clicked than an ad shown at the bottom.

1 Search engines associate the anchor text that is used to link to a

page with that page. By referring to target pages with anchor
terms that have a negative connotation, malicious sites can
cause these targets to become search results for negative query
terms [6].

18

Hence, search engines need a system for allocating the positions
to advertisers, and auctions are a natural choice. Currently, the
mechanisms most widely used by search engines are based on
GSP.

In the simplest GSP auction, for a specific keyword, advertisers
submit bids indicating the maximum price they are willing to pay.
When a user enters a keyword, he receives search results along
with sponsored links, the latter shown in decreasing order of bids.
In particular, the ad with the highest bid is displayed at the top,
the ad with the next highest bid is displayed in the second
position, and so on. If a user subsequently clicks on an ad in
position k, that advertiser is charged by the search engine an
amount equal to the next highest bid, i.e., the bid of an advertiser
in position k + 1. If a search engine offered only one
advertisement per result page, this mechanism would be
equivalent to the standard second price, or Vickrey-Clarke-
Groves (VCG), auction [13]. With multiple positions available,
the GSP generalizes the second price auction (hence the name).
Here, a winner pays the next highest bidder’s bid. Modified
versions of GSP are used by Google AdWords2, Yahoo Search
Marketing (SM) 3 and MSN AdCenter 4 . For example, one
common modification is to combine the advertisers bid price with
the expected click-through-rate (CTR) to compute an expected
monetization score. Sponsored links are presented in decreasing
order of expected monetization.

2.4 Semantic and Syntactic Cloaking
Cloaking behavior that is aimed at manipulating the search engine
is defined as semantic cloaking [19]. The exact definition of
semantic cloaking varies from search engine to search engine. On
the other hand, syntactic cloaking is a simpler and more basic
variant of cloaking. Syntactic cloaking implies that different
content is served to automated crawlers vs Web browsers, but not
different content to every visitor. Dynamic Web pages that serve
different pages to every visitor would not be syntactically
cloaking, but could be semantically cloaking. In this paper, our
operating definition for cloaking is more than just syntactic
cloaking. Syntactic cloaking is definitely cloaking, but dynamic
Web pages are also addressed to some extent (see Section 6).

3. POPULARITY AND MONETIZABILITY
Monitoring, evaluating, and understanding user behavior and
preferences is crucial for search engine development, deployment,
and maintenance. Search engines model and interpret user
behavior to improve ranking, click spam detection, Web search
personalization, and other tasks [1,2,17]. Further, for billing and
reporting purposes every impression, user click, and referral
relating to each sponsored link are also logged. We propose
mining these logs to determine query popularity and
monetizability. Such query categorization has been valuable for
improving collaborative Web search [15-17].

2 http://adwords.google.com/select/
3 http://searchmarketing.yahoo.com/
4 http://adcenter.msn.com/

3.1 Query Popularity
We define the popularity of a query to be proportional to the
number of times it occurs in the query logs during a specific time
period. Using this definition one can compute query lists such as
the top 10 popular search queries for a day, a month, or even a
year. Most major search engines publish these results online at
different granularities. Table 1 presents a list of common sources
of popular queries. The list of top 5000 most popular queries was
computed from MSN Search query logs. In this paper, we
examine the cloaking properties of search results from these top
5000 popular queries from Google5, MSN Search6, and Ask.com7.

Table 1. Common sources of popular queries

Engine URL
Google Zeitgeist http://www.google.com/press/zeitgeist.html

Yahoo Buzz Index http://buzz.yahoo.com/

MSN Search Insider http://www.imagine-msn.com/insider/

Ask.com IQ http://sp.ask.com/en/docs/iq/iq.shtml

AOL Hot Searches http://hotsearches.aol.com/search/hotsearch.jsp

Dogpile Search Spy http://www.dogpile.com/info.dogpl/searchspy/

Lycos 50 http://50.lycos.com/

3.2 Query Monetizability
Computing the monetizability of a query is not as straight forward
as computing its popularity. Advertisers can bid for a single
keyword, a keyword and additional search terms, or a phrase. The
bidding process can be blind or open, i.e., each bidder’s bid price
and identity may or may not be disclosed to other bidders8. Three
different types of matches are typically possible: broad match,
phrase match, and exact match. Some providers support negative
or excluded keywords also. The advertiser also picks the type of
matching done between the user search query and the bids. A
broad match occurs when the user query contains all of the
keywords (in any order). Bid keywords may be expanded to
include plurals and relevant variations. Phrase match occurs when
all bid keywords occur in the prescribed order in the search query.
Both broad and phrase matches allow extraneous query words.
Exact matching occurs only when the search query matches the
bid phrase exactly. No extraneous terms are allowed. The
occurrence of negative or excluded keywords in the search query
suppresses any matching. The matching sponsored links are
ranked based on relevance, monetizability (combination of bid
price and CTR), and other factors.

In this paper, we define the monetizabilty of a specific query to be
proportional to the total revenue generated by sponsored ads

5 http://www.google.com
6 http://search.msn.com
7 http://www.ask.com
8 For example, Yahoo SM auctions are not blind while Google’s

AdWords and MSN’s AdCenter’s auctions are blind. Further,
not only the bid-price but the bidding advertiser might be
disclosed during these auctions.

19

served along side the search results (for that query) during a
specific time period. The list of top 5000 most monetization
queries over a single day were computed from MSN Search’s
advertisement logs. Note that the ad logs are used only to obtain
the top 5000 monetizable queries and their ranks. For simplicity,
we do not use their monetization scores. For each of these top
5000 monetizable queries, we examine the cloaking properties of
the resulting top 200 search results from Google, MSN Search,
and Ask.com.

4. DATA SETS
4.1 Query Data Sets
We use two lists of 5000 queries each in the experiments. The
first list is the set of the top 5000 most popular search queries
computed over one month. The second list is the set of the top
5000 most monetizable search queries over one day. The former
was obtained by processing search query logs, while the latter was
obtained by processing ad logs. Both logs were obtained from the
MSN search engine. 826 queries (17%) were the same between
the two lists.

4.2 URL Data Sets
For each query, the top 200 search results were obtained from
three search engines: Google, MSN Search, and Ask.com. On
every search engine, each unique query was looked up only once.
Each query produced 600 search result URLs which typically
contain several duplicates. Each set of 5000 queries generated 3
million URLs. Overall, the 5000 popular queries generated 1.49
million unique URLs (popular set), and the top 5000 monetizable
queries generated 1.28 million unique URLs (monetizable set).
Each unique URL was processed only once.

Current search engines already employ numerous but unknown
anti-spam mechanisms. In our analysis, we assume that such Web
spam filtering/removal techniques are uniformly applied to the
200 search results and the 5000 queries. This is likely the case for
automated filtering that is applied to the whole index, for example
during the crawling phase. Manual Web spam removal is one
special case where this assumption may not be invalid. Given its
expense, manual filtering is likely to be limited to the top few (top
10 or top 20) search results for the most popular queries. Since we
are looking at the top 200 results for the top 5000 queries, we
conjecture that the impact of filtering on the overall results
reported in this paper is small.

5. CLOAKING DETECTION RESULTS
We use a modified version of the syntactic cloaking detection
algorithm from [19]. For each URL, up to four copies of the Web
page, denoted by C1, B1, C2, and B2, are downloaded and
compared. There are several stages where an early out is possible
making the modified procedure more efficient. During the
download process, many of the non-cloaked pages are detected
through simple HTML string comparisons, HTML to text
conversion, and text string comparisons. Normalized term
frequency difference (NTFD) is subsequently used to compute a
cloaking score and used to further reduce the set of possibly
cloaked URLs. Finally, using labeled data, a threshold for the
cloaking score is chosen to classify remaining URLs. A flow chart
depicting the different stages is presented in Figure 1.

5.1.1 Downloading Web Pages
The first copy of the URL (C1) was obtained by mimicking a
popular Web crawler (MSNBot) and the second (B1) was obtained
using a common Web browser’s (Internet Explorer) agent string.
The user-agent strings for MSNBot and Internet Explorer were
set to those given in Section 1. These first and second copies were
checked for identical HTML content (simple string comparison).
If they were identical, the URL was marked as not cloaked. About
70−75% of the URLs fell under this category. The HTML content
for the remaining 25−30% was converted to plain text and
directly compared (simple string comparison). At this stage, about
13.5% of the URLs produce identical text streams and are marked
as not-cloaked. The text streams are tokenized (using white space)
and their term frequencies are computed. About 0.5% of the
URLs produce identical term frequencies. The remaining URLs
(about 12%) with differing text content were downloaded two
more times to obtain a third (MSNBot, C2) and a fourth (Internet
Explorer, B2) copy. These were then converted to text and their
term frequencies calculated. Note that at the end of the download
process those URLs with only (C1, B1) pair of pages are not-
cloaked (by definition). The remaining URLs have four copies
(C1, B1, C2, and B2) and need further processing.

Each of the copies (C1, B1, C2, and B2) was asynchronously
crawled using different crawler threads. For example, all C1
copies were crawled by the first crawler thread. Similarly, all B1,
C2, and B2 copies were crawled by the first browser thread, the
second crawler thread, and the second browser thread,
respectively. The ordering of initiating URLs downloads was the
same for all four threads (with the exception of early out scenarios
where URLs were skipped by the C2, and B2 threads).

In the event of a download failure, the download was reattempted
once. URLs that failed download twice were dropped from
analysis. For both the popular and monetizable query URL sets,
less than 3% of the URLs failed to download. Overall, on average
of about 2.1 downloads are done per unique URL.

5.1.2 Normalized Term Frequency Difference
A simple normalized term frequency difference (NTFD) between
the four copies was used in computing a cloaking score. Let T1
and T2 be sets of terms from two Web pages after conversion and
tokenization. Note that T1 and T2 may contain repeats. The
normalized term frequency difference is computed as

() ()
()

()
()

1 2 2 1 1 2
1 2

1 2 1 2

\ \
(,) 1 2

T T T T T T
D T T

T T T T
∪ ∩

= = −
∪ ∪

Where |.| is the set cardinality operator and all set operations are
extended to work with sets with repeated terms. (T1 \ T2) is the set
of terms in the first page but not in the second page, (T2 \ T1) is
the set of terms in the second page but not in the first page, and
(T1∪T2) is the aggregation of terms in both pages. The
normalization by the (T1∪T2) term reduces any bias that stems
from the size of the Web page. The NTFD score for any pair of
Web pages lies in [0,1]. In essence, for the same D(T1,T2), value,
larger Web pages are allowed to have more terms that are
different between the two pages. We note that the normalized
term frequency difference is symmetric, i.e.,

20

1 2 2 1(,) (,)D T T D T T=

The above term-based page-difference score is quite simple and
disregards the semantic and layout structure of page content.
Further, all sections of the Web page (navigation, header, footer,
advertisements, etc) are treated equally9.

We note that this score differs significantly from that proposed in
[19]. Instead of using the cardinality of all the terms in the web
pages, a “bag of words” method is used in [19] for analyzing the
Web pages. They parse the HTML into terms and only count each
unique term once no matter how many times this term appears.
Further, they do not normalize the term set difference which could
potentially bias the score against large Web pages.

5.1.3 Cloaking Test
As described in Section 5.1.1, many of the URLs are marked as
non-cloaking during the download process itself. The remaining
URLs end up with four downloaded versions (C1, B1, C2, and B2).
The NTFD score for these four Web page versions is used to
obtain a cloaking score, S, given by

D

S

S ∆
=

∆

Where ∆D is the smaller of the NTFD values for the two cross-
pairs of Web pages (C1,B1) and (C2,B2), and ∆S is the larger of the
NTFD values for the two similar-pairs of Web pages (C1,C2) and
(B1,B2). Mathematically,

1 1 2 2min((,), (,))D D C B D C B∆ =

1 2 1 2max((,), (,))S D C C D B B∆ =

The simple divide-by-zero cases are resolved as follows: (a) If ∆S
= 0 and ∆D = 0, the URL is marked as non-cloaked (S = 0), (b) If
∆S = 0 and ∆D > 0, the URL is marked as cloaked (S = ∞). At this
stage all of the dynamic Web pages are identified using:

0 dynamic URLsS< < ∞ ⇒

A subsequent threshold test is used to find cloaked pages:

0 cloaking spamt S< < ⇒

For each of the URL sets (popular and monetizable) 2000 URLs
were randomly sampled from the set of dynamic URLs and
manually labeled as spam or no-spam.

9 We plan to explore more advanced methods for computing page

difference scores based on page and link content in future work.

Figure 1. Cloaking detection procedure. The pair of
percentages indicate number of classified / unclassified URLs

at each stage for the popular and monetizable URLs,
respectively.

21

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

Popular
Monetizable

Figure 2. Precision-Recall curve for popular and monetizable

URL sets as a function of the cloaking score threshold, t.
Figure 2 shows the precision-recall curve for various values of the
threshold t. The precision and recall values and their associated
thresholds are also presented in Table 2. As the value of t
increases, recall gradually decreases. Precision starts out high at
low values of recall and quickly reaches a final value around 75%
for popular URLs and a value of 98.5% for monetizable URLs.

All three commonly used F−measures: F1, F0.5, and F2, reach the
highest value at a threshold of 0.0, where the recall is 100% and
the precision is 73.12% and 98.54% for popular and monetizable
URLs, respectively. This clearly indicates that the cloaking score
is a very good indicator of cloaking spam. A threshold of 0
implies that all pages marked as dynamic using

0 dynamic URLsS< < ∞ ⇒

can be classified as cloaking spam. Overall, we estimate that
5.99% (=8.2*0.731) of popular query results and 9.66%
(=9.8*0.985) of all monetizable queries employ cloaking spam.

Table 2. Precision, Recall, and Thresholds for classifying
URLs as cloaking spam using their cloaking score

Precision (threshold, t)
 Recall

 Popular URLs Monetizable URLs

10 85.74 (19.93) 100.00 (15.11)

20 81.72 (1.98) 99.91 (1.28)

30 75.33 (1.10) 98.77 (0.97)

40 76.65 (0.94) 98.56 (0.87)

50 77.39 (0.78) 98.79 (0.77)

60 77.81 (0.53) 98.72 (0.56)

70 77.88 (0.27) 98.59 (0.32)

80 75.86 (0.11) 98.34 (0.07)

90 73.26 (0.02) 98.46 (0.004)

100 73.12 (0.00) 98.54 (0.000)

Note that the above percentages are mean values over all 5000
queries. Figure 3 shows the distribution of cloaking spam URLs
over different queries. Both popular and monetizable queries were
independently sorted such that the percentage curves are
monotonically decreasing with increasing sorted query rank. Note
that these two query sets are not the same. They have only 17% of
the queries in common. We note that, on average, the top 100
(2%) most cloaked queries have 10x as many cloaking URLs in
their search results than the bottom 4900 queries (98%). This
skewed distribution gives an effective way of monitoring and
detecting cloaked URLs. By starting with the most cloaked
queries once can efficiently and quickly identify cloaked URLs.

Figure 3. The distribution of cloaking spam URLs over

different queries. Both popular and monetizable queries were
independently sorted such that the percentage curves are

monotonically decreasing with increasing sorted query rank.

6. DISCUSSION AND FUTURE WORK
Cloaking is a search engine spamming technique that reduces the
reliability of Web page information that is widely accessible
through the search engine. Web sites that deliver one page to a
search engine for indexing while serving an entirely different
page to users browsing the site inherently hurt the search engine’s
credibility and waste internet users’ time.

In this paper, we showed that the degree of cloaking among
search results depends on query properties such as popularity and
monetizability. Query popularity and monetizability were
estimated based on whether a given query belonged to the popular
set of URLs or monetizable set of URLs (or both). We also
presented a new cloaking detection algorithm based on
normalized term frequency difference scores and demonstrated its
effectiveness in identifying cloaking spam pages on a dataset of 3
million URLs obtained using 10,000 search queries.

The proposed cloaking detection algorithm has a very high
accuracy in detecting cloaked spam pages in monetizable query
results. Moderate accuracy is also achieved for popular queries.
By combining a matching model (query bid keywords) similar
to that used in for serving online advertisements with search

100 101 10 2 103 1040

0.1

0.2

0.3

0.4

0.5

Sorted Query Rank

Pe
rc

en
ta

ge
 o

f t
ot

al
 c

lo
ak

ed
 p

ag
es

Monetizable Queries
Popular Queries

22

query and advertising logs, one can estimate the popularity and
monetizability of arbitrary queries. Such estimates may be
valuable in prioritizing URLs to be tested for cloaking spam. We
hope to pursue these ideas in our future work.

7. ACKNOWLEDGMENTS
We would like to thank Ahmad Abdulkader and Chris Meek for
very useful and productive discussions on Cloaking detection. We
would also like to thank Chau Luu for help with our spam
labeling efforts.

8. REFERENCES
[1] E. Agichtein, E. Brill, S. Dumais, R. Ragno (2006),

“Learning User Interaction Models for Predicting Web
Search Result Preferences,” To appear in SIGIR’2006: 29th
Annual International ACM SIGIR Conference on Research
& Development on Information Retrieval, Seattle.

[2] E. Agichtein, E. Brill, S. Dumais (2006), “Improving Web
Search Ranking by Incorporating User Behavior,” To appear
in SIGIR’2006: 29th Annual International ACM SIGIR
Conference on Research & Development on Information
Retrieval, Seattle.

[3] A. Back (2002), “Hash cash - a denial of service counter-
measure,” Technical. Report. Available at:
http://citeseer.ist.psu.edu/back02hashcash.html

[4] A. Benczúr, K. Csalogány, T. Sarlós and M. Uher (2005),
“SpamRank – Fully Automatic Link Spam Detection,” In 1st
International Workshop on Adversarial Information
Retrieval on the Web, May 2005.

[5] B. Davison (2000), “Recognizing Nepotistic Links on the
Web,” In AAAI-2000 Workshop on Artificial Intelligence
for Web Search, July 2000.

[6] I. Drost and T. Scheffer (2005), “Thwarting the negritude
ultramarine: Learning to identify link spam.” In Proceedings
of European Conference on Machine Learning, pages 96-
107, Oct. 2005.

[7] C. Dwork, A. Goldberg, and M. Naor (2003), “On Memory-
Bound Functions for Fighting Spam,” Proceedings of the
23rd Annual International Cryptology Conference (CRYPTO
2003), pages 426-444, Santa Barbara, CA, August 2003.

[8] B. Edelman, M. Ostrovsky, and M. Schwarz (2005),
“Internet Advertising and the Generalized Second Price
Auction: Selling Billions of Dollars Worth of Keywords,”
November 2005, NBER Working Paper No. W11765
Available at SSRN: http://ssrn.com/abstract=847037

[9] D. Fetterly, M. Manasse, and M. Najork (2004), “Spam,
damn spam, and statistics: Using statistical analysis to locate

spam Web pages,” In Proceedings of WebDB, pages 1-6,
June 2004.

[10] L. Graham and P. T. Metaxas (2003). “Of course it’s true; I
saw it on the internet!”: Critical thinking in the internet era.
Commun. ACM, 46(5): 70–75, 2003.

[11] Z. Gyöngyi and H. Garcia-Molina (2005), “Web spam
taxonomy,” In First International Workshop on Adversarial
Information Retrieval on the Web (AIRWeb’05), Chiba,
Japan, 2005.

[12] Z. Gyöngyi, H. Garcia-Molina and J. Pedersen, “Combating
Web Spam with TrustRank,” In 30th International
Conference on Very Large Data Bases, Aug. 2004.

[13] V. Krishna (2002). Auction Theory, Academic Press, 2002.
[14] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly (2006),

“Detecting Spam Web Pages through Content Analysis,” In
Proceedings of the World Wide Web Conference 2006
(WWW'06). pp. 83-92, Edinburgh, United Kingdom, May
23-26, 2006.

[15] D. Shen, J-T. Sun, Q. Yang, Z. Chen (2006), “Building
Bridges for Web Query Classification,” In Proceedings of
the 29th ACM International Conference on Research and
Development in Information Retrieval (SIGIR'06). Seattle,
USA, August 6-11, 2006.

[16] D. Shen, R. Pan, J-T. Sun, J. J. Pan, K. Wu, J. Yin and Q.
Yang (2005), “Q2C@UST: Our Winning Solution to Query
Classification in KDD Cup 2005,” SIGKDD Explorations.
Volume 7, Issue 2, December 2005.

[17] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz
(1999), “Analysis of a Very Large Web Search Engine
Query Log. SIGIR Forum,” 33(1):6--12, 1999.

[18] J-T. Sun, X. Wang, D. Shen, H-J. Zeng, Z. Chen (2006),
“Mining Clickthrough Data for Collaborative Web Search,”
In Proceedings of the World Wide Web Conference 2006
(WWW'06). pp. 947-948, Edinburgh, United Kingdom, May
23-26, 2006.

[19] B. Wu and B. D. Davison (2005) “Cloaking and Redirection:
A Preliminary Study,” In Proceedings of AIRWeb'05, May
10, 2005, Chiba, Japan.

[20] Baoning Wu and Brian D. Davison. (2006), “Detecting
Semantic Cloaking on the Web,” Accepted in 15th
International World Wide Web Conference, Industrial Track,
Edinburgh, Scotland, May 22-26, 2006.

[21] “Did-it, Enquiro, and Eyetools Uncover Google’s Golden
Triangle: New Eye Tracking Study verifies the importance of
page position and rank in both Organic and PPC search
results for visibility and click through in Google.” Available
at http://www.prweb.com/releases/2005/3/prweb213516.htm

23

24

Tracking Web Spam with Hidden Style Similarity

Tanguy Urvoy, Thomas Lavergne, Pascal Filoche

France Telecom R&D
∗

{tanguy.urvoy,thomas.lavergne,pascal.filoche}@orange-ft.com

ABSTRACT
Automatically generated content is ubiquitous in the web:
dynamic sites built using the three-tier paradigm are good
examples (e.g. commercial sites, blogs and other sites pow-
ered by a web authoring software), as well as less legitimous
spamdexing attempts (e.g. link farms, faked directories. . .).

Those pages built using the same generating method (tem-
plate or script) share a common “look and feel” that is not
easily detected by common text classification methods, but
is more related to stylometry.

In this paper, we present a (hidden) style similarity mea-
sure based on extra-textual features in html source code.
We also describe a method to clusterize a large collection of
documents according to this measure. The clustering algo-
rithm being based on fingerprints, we also give some recalls
about fingerprinting.

By conveniently sorting the generated clusters, one can ef-
ficiently track back instances of a particular automatic con-
tent generation method among web pages collected using
a crawler. This is particularly useful to detect pages across
different sites sharing the same design — this is often a good
hint of either spamdexing attempt or mirrored content.

1. INTRODUCTION
Automatically generated content is nowadays ubiquitous

on the web, especially with the advent of professional web
sites and popular three-tier architectures such as “LAMP”
(Linux Apache Mysql Php). Generation of these pages using
such architecture involves:

• a scripting component;

• a page template (“skeleton” of the site pages);

• content (e.g. product catalog, articles repositery. . .),
usually stored in databases.

When summoned, the scripting component combines the
page template with information from the database to gener-
ate an html page, having no difference with a static html
page from a robot crawler point of view (shall robots have
point of view).

∗Thomas Lavergne also ENST Paris

Copyright is held by the author/owner(s).
AIRWEB’06, August 10, 2006, Seattle, Washington, USA.

1.1 Spamdexing and Generated Content
By analogy with e-mail spam, the word spamdexing des-

ignates the techniques used to reach a web site to a higher-
than-deserved rank in search engines response lists. For in-
stance, one well known strategy to mislead search engines
ranking algorithms consists of generating a maze of fake web
pages called link farm.

Apart from the common dynamic web sites practice, the
ability to automatically generate a large amount of web
pages is also appealing to web spammers. Indeed [3] points
out that “the only way to effectively create a very large num-
ber of spam pages is to generate them automatically”.

When those pages are all hosted under a few domains,
the detection of those domains can be a sufficient counter-
measure for a search engine, but this is not an option when
the link farm spans hundreds or thousands of different hosts
— for instance using word stuffed new domain names, or
buying expired ones [6].

One would like to be able to detect all pages generated
using the same method once a spam page is detected in a
particular search engine response list. One direct applica-
tion of such a process would be to enhance the efficiency of
search engines blacklist databases by “spreading” detected
spam information to find affiliate domains (following the phi-
losophy of [7]).

1.2 Detecting Generated Pages
We see the problem of spam detection in a search engine

back office process as two-fold:

• detecting new instances of already encountered spam
(through editorial review or automatic methods);

• pinpointing dubious sets of pages in a large uncate-
gorised corpus.

The first side of the problem relates to supervised classi-
fication and textual similarity, while the second is more of
the unsupervised clustering kind.

1.2.1 Detecting Similarity With Known Spam
Text similarity detection usually involves word-based fea-

tures, such as in e-mail Bayesian filtering. This is not always
relevant in our case, because though those pages share the
same generation method, they rarely share the same vocab-
ulary [15] (apart from the web spam specifically involving
adult content) — hence using common text filtering meth-
ods with this kind of web spam would miss a lot of positive
instances. For example exiled presidents and energising sex
drugs are recurrent topics in e-mail spam, but link farm

25

automatically generated pages tend to rather use large dic-
tionary in order to span a lot of different possible requests
[6].

To detect similarity based on pages generation method,
one needs to use features more closely related to the in-
ternal structure of the html document. For instance, [13]
proposed to use html specific features along with text and
word statistics to build a classifier for genre of web docu-
ments.

1.2.2 Stylometry andhtml

In fact, what best describes the relationship between those
pages generated using the same template or method seems
to be more on a style ground than a topical one. This would
relate our problem with the stylometry area. Up to now, sty-
lometry was more generally associated with authorship iden-
tification, to deal with problems such as attributing plays to
the right Shakespeare, or to detect computer software pla-
giarism [5]. Usual metrics in stylometry are mainly based
on word counts [12], but also sometimes non-alphabetic fea-
tures such as punctuation. In the area of web spam detec-
tion, [15] and [11] propose to use lexicometric features to
classify the part of web spam that does not follow regular
language metrics.

1.2.3 Overview of This Paper
We first give some recalls about similarity, fingerprints

and clustering in section 2. We then detail the specificities
of the ”Hidden Style Similarity” algorithm in section 3. The
experimental results are described in section 4.

2. SIMILARITY AND CLUSTERING

2.1 Similarity Measure
The first step before comparing documents is to extract

their (interesting) content: this is what we call preprocessing.
The second step is to transform this content into a model
suitable for comparison (except for string edition based dis-
tances like Levenshtein and its derivatives where this inter-
mediate model is not mandatory). For frequencies based
distances the second step consists of splitting up the docu-
ments into multi-sets of parts (frequencies vectors). For set
intersection based distances, the split is done into sets of
parts. Depending on the granularity expected, these parts
may be sequences of letters (n-grams), words, sequences of
words, sentences or paragraphs. The parts may overlap or
not.

There are many flavors of similarity measure [14, 16]. The
most used measure in stylometry is the Jaccard similarity
index. For two sets of parts D1, D2:

Jaccard(D1, D2) =
|D1 ∩D2|
|D1 ∪D2| .

Variants may be used for the normalizing factor, such as in
the Dice index:

Dice(D1, D2) = 2 · |D1 ∩D2|
|D1|+ |D2| .

Whatever kind of normalisation used for |D1∩D2|, the most
important ingredients for the quality of comparison are the
preprocessing step and the parts granularity.

The one-to-one calculus of similarities is interesting for
fine comparison into a small set of documents, but the quad-

ratic explosion induced by such a brute-force approach is
unacceptable at the scale of a web search engine. To cir-
cumvent this explosion, more tricky methods are required.
These methods are described in the next three sections.

2.2 Fingerprints
The technique of documents fingerprinting and its appli-

cation for similarity clustering is a kind of locality sensitive
hashing [9]. We mainly based our work on the papers [8], [2]
and [1], where the pratical use of minsampling (instead of
random sampling) and its leverage effect on similarity esti-
mation is well described. We also noticed a phrase level use
of fingerprints to track search engine spam in [4].

2.2.1 Minsampling
Each document is split up into parts. Let us call P the

set of all possible parts. The main principle of minsampling
over P is to fix at random a linear ordering on P (call it
≺) and represent each document D ⊆ P by its m lowest
elements according to ≺ (we denote this set Min≺,m(D)).

If ≺ is chosen at random over all permutations over P then
for two random documents D1, D2 ⊆ P and for m growing,
it is shown in [1] that

|Min≺,m(D1) ∩Min≺,m(D2) ∩Min≺,m(D1 ∪D2)|
|Min≺,m(D1 ∪D2)|

is a non biased estimator of Jaccard(D1, D2).

2.2.2 Fingerprints and Index Storage
With this fingerprinting method, the fingerprint of a doc-

ument D is stored as a sorted list of m integers (which are
hashing keys of the elements of Min≺,m(D)). The experi-
ments of [8] show that a value around m = 100 is reasonable
for the detection of similar documents in a large database.
The drawback of this method it that it does not provide
a real vector space structure to the fingerprints. A vec-
tor space structure is more convenient, for instance to build
indexes in a database to later fetch near duplicates of a par-
ticular document.

2.2.3 Optimization of Minsampling
An improvement of the model is to use m independent

linear orderings over P , let us call them ≺i for i ∈ [m], and
use these ordering to select one minimun element by order-
ing. The result is a real vector of m independant integers
and the similarity measure becomes:

Sima(D1, D2) =

∑m
i=0 |Min≺i(D1) ∩Min≺i(D2)|

m

which is a correct estimator of the Dice similarity.

2.3 Clustering
When working on large volume of documents, one would

like to group together the documents which are similar enough
according to the chosen similarity. This is especially useful
when no specific paragon to look for is known in advance.

If D is the set of documents, we want to compute a map-
ping Cluster : D → D associating to each element x its class
representative Cluster(x), with Cluster(x) = Cluster(y) if
and only if sim(x, y) is lower than a given threshold.

2.3.1 Clustering with Fingerprints

26

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
2

8
 k

ey
s

fi
n

g
er

p
ri

n
ts

 H
S

−
si

m
il

ar
it

y

full document HS−similarity

Figure 1: The rate of matched dimensions accord-
ing to the full document hs-similarity (one-to-one
comparison between 10000 html files).

The first benefit of using fingerprints is to reduce the size
of documents representatives, allowing to perform all com-
putation in memory. As shown in figure 1, this reduction
by sampling is at the cost of a little loss of quality in the
similarity estimation.

Another important benefit of fingerprints is to give a low
dimension representation of documents. It becomes possible
to compare only the documents that match at least on some
dimensions. This is a way to build the sparse similarity ma-
trix with some control over the quadratic explosion induced
by the biggest clusters [2].

3. THE HSS ALGORITHM
To capture similarity based on pages generation method,

we propose to use a specific document preprocessing exclud-
ing all alpha-numeric characters, and keeping into account
the remaining characters through the use of n-grams. By
analysing usually neglected features of html texts like extra-
spaces, lines feed or tags, we are able to modelize the “style”
of html documents. This model enables us to compare and
group together documents sharing many hidden features.

We consider both the one-to-one full document hs-simila-
rity and the global hs-clustering of several documents. These
two aspects of the hss algorithm are described in figure 2.

As a side effect, the algorithm is efficient to characterize
html documents coming from the same web site without
information about the host or url, but the most interesting
results are similarity classes containing pages across many
differents domains yet with a high hs-similarity.

3.1 Preprocessing
The usual setup procedure to compare two documents is

to first remove everything that do not reflect their content.
In the case of html documents, this preprocessing step may
include removing of tags, of extra spaces and of stop words.
It may also include normalization of words by capitalization
or stemming.

The originality of our approach is to do exactly the op-
posite: we keep only the “noisy” parts of html documents
by removing any alphanumeric character. For example, ap-
plying such a preprocessing to a relatively human readable
html code like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xht...

HTML Document

content remover

HTML Noise

N−grams set

min−sampler

fingerprint

Jaccard index

exact

HS−similarity

estimated

dubious HSS−classes

doms counter

1

2

HS−similarity classes

HTML Document

content remover

HTML Noise

N−grams set

min−sampler

fingerprint
clustering

Figure 2: The hss algorithm: step (1) describes one-
to-one full document hs-similarity computation, step
(2) describes large scale similarity classes calculus
and link farm detection.

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"><head><title>Th...

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<meta http-equiv="Keywords" content="GNU, FSF, Free Software Foundation, Linux, Em...

<meta http-equiv="Description" content="Since 1983, developing the free UNIX style...

<link rev="made" href="mailto:webmasters@gnu.org">

<link rel="stylesheet" type="text/css" href="gnu_fichiers/gnu.css">

gives an html noise such as:
<! "-//// . //" "://..////-.">

< ="://..//" :="" =""><><> </>

< -="-" ="/; =-">

< -="" =", , , , , , , , , , , ">

< -="" =" , , .">

< ="" =":.">

< ="" ="/" ="/.">

Using non-alphanumeric characters – in the case of stan-
dard text, these are punctuation signs – as features to clas-
sify text is not completely unusual ([10], [13]), though most
use it only as a complementary hint. Since html syntax in-
cludes a lot of non-alphanumeric characters, they happen to
be very relevant in our case. Because it is straightforward,
this filtering of html text is also extremly fastly computed.

3.2 Similarity
For scalability reasons, we chose to use a set intersection

based distance with overlaping n-grams on the preprocessing
output as parts. A simple one-to-one style similarity mea-
sure can then be computed using formula from 2.1 But as
said earlier, using this one-to-one similarity measure doesn’t
fit for large scale clustering. Using fingerprints on the pre-
processing output is required to address the scalability issue.

3.3 Fingerprints
We chose to use minsampling with m independant order-

ings, with another (speedup) improvement which consists of
using a pre-hashing function to select in advance which di-
mensions of the final vector are concerned by a given part

27

of the document. Formally, if (C0, . . . , Cm−1) is the parti-
tion of P induced by the pre-hashing function, we have the
following similarity measure:

Simb(D1, D2) =

m∑
i=0

|Min≺i(D1 ∩ Ci) ∩Min≺i(D2 ∩ Ci)|
m

This pre-hashing avoids the heavy calculus of m linear or-
derings for each considered part, and also avoids to fill two
dimensions of the vector with the same part of a document.
The drawback is that small documents may not contain
enough parts to fill all dimensions of their fingerprint vector.

We chose to ignore these empty dimensions in the counting
of matched dimensions, thus lowering drastically the simi-
larity estimation for small documents. This side effect is not
critical, hs-similarity diagnostic being by essence unreliable
for small documents. Figure 1, shows a comparison between
exact Dice measure and Simb measure on fingerprints (with
m = 128).

3.3.1 Implementation
Each document is preprocessed on the fly. The parts we

used are overlapping n-grams hashed into 64 bits integers.
To compute the m independent orderings ≺i, we precom-
pute m permutations σi : [264] → [264] and compare the
permuted values:

x ≺i y ⇔ σi(x) < σi(y)

To compute these permutations, we use a subfamily of per-
mutations of the form σi = σ1

i ◦σ2
i where σ1

i is a bits shuffle
and σ2

i (x) is an exclusive or mask. After having initialized
every dimension of the fingerprint vector V ∈ INm to∞, we
evaluate each n-gram of the html noise with Procedure 1.

Procedure 1 Insert a string s by minsampling into a fin-
gerprint V ∈ INm.

Require: m > 0 and V initialized
h := preHash(s)
i := h mod m
h′ := σi(h)
if h′ < V [i] then
V [i] := h′

end if

3.4 Clustering
We used a variant from the algorithm described in [2]. It

does not build the entire similarity graph and uses a probing
heuristic to find potentially similar pairs.

3.4.1 Using Quasi-Transitivity on Similarity Matrix
By thresholding the similarity matrix (cf. 2.3.1), we ob-

tain a symetric relation (let us call it similarity graph):

S = {(x, y) ∈ D ×D | sim(x, y) < threshold}
Similarity graphs are characterized by their quasi-transitivity
property: if xSy and ySz then there is a high probabil-
ity that xSz. In other words, the connected components
of these graphs are almost equivalence classes. This quasi-
transitivity is helpful to accelerate the clustering process. If
the relation is transitive enough, any element may be used
as reference to decide if other elements are in the same class.
In practice, though building the full similarity graph is too

1

23

Figure 3: The quasi-transitivity of estimated hs-
similarity relation is well illustrated by this full sim-
ilarity graph (realized from 3000 html files). With
a transitive relation, each connected component
would be a clique. For “bunch of grapes” compo-
nents like (1) and (2), a clear cut may be done but
for “worms” components like (3) the similarity di-
agnostic is less clear.

expensive, the noise induced by sampling raises some inter-
est in using a bit of redundancy to improve the robustness
of the process (cf. figure 3).

To approximate the clustering map Cluster, we use an
algorithm controlled by two parameters: a probe threshold
p and a check threshold t. Depending of the aggressiveness
of hashing, it may be useful to group fingerprint keys. This
introduces a new parameter k to define the size of these
groups. We first generate p random subsets of size k in
[m]. By projecting and indexing fingerprint vectors p times
according to these k-subsets, we probe for potential simi-
lar pairs which are then checked according to t (See Proce-
dure 2).

Procedure 2 Search hs-similarity classes

Require: 0 < k, p, t ≤ m
init similarity graph;
for i := 0 to p do

pick a k-subset s ⊆ [m];
for all pairs (x, y) of fingerprints matching according
to s do

if Simb(x, y) > t then
add edge (x, y) to similarity graph;

end if
end for

end for
compute Clusters from connected components of the
graph;

28

3.4.2 Setting Up of Parameters
A good way to choose parameters p, t and k is to make

sure that the probability to miss a pair of similar documents
during the probing step is under a certain value. With k = 1,
for a check threshold t and a probe threshold p, the prob-
ability of missing a pair of similar documents is dominated
by:

Pmiss =

(
m−p
t

)
(
m
t

) =
(m− t− 1) . . . (m− t− p+ 1)

m. . . (m− p+ 1)

The actual error rate is lower due to the quasi-transitivity
of the similarity graph. With m = 128 and k = 1 the
relation p · t ≥ 512 ensures an edge missing probability lower
than 1%.

4. EXPERIMENTAL RESULTS
We used for experimentation a corpus of five million html

pages crawled from the web. This corpus was built by com-
bining tree crawl strategies:

• a deep internal crawl of 3 million documents from 1300
hosts of dmoz directory;

• a flat crawl of 1 million documents from a french search
engine blacklist (with many adult content);

• a deep breadth first crawl from 10 non adult spam urls
(chosen in the blacklist) and 10 trustable urls (mostly
from french universities).

At the end of the process, we estimated roughly that 2/5 of
the collected documents where spam.

After fingerprinting, the initial volume of 130 GB data to
analyse was reduced down to 390 Mo, so the next step could
easily be made in memory.

4.1 One-to-All Similarity
The comparison between one html page and all other

pages of our test base is a way to estimate the quality of
hs-similarity. If the reference page comes from a known web
site, we are able to judge the quality of hs-similarity as web
site detector. In the example considered here: franao.com

(a web directory with many links and many internal pages),
a threshold of 20/128 gives a franao web site detector which
is not based on urls. On our corpus, this detector is 100%
correct according to urls prefixes.

By sorting all html documents by decreasing hs-similarity
to one randomly chosen page of franao web site, we get a
decreasing curve with different gaps (Figure 4). These gaps
are interesting to consider in detail:

• The first 20, 000 html pages are long lists of external
links, all built from template 1 (Figure 5);

• Around 20, 000 there is a smooth gap (1) between long
list and short list pages, but up to 95, 000, the tem-
plate is the same;

• Around 95, 000, there is a strong gap (2) which marks
a new template (Figure 6): up to 180, 000, all pages
are internal franao links built according to template 2;

• Around 180, 000 there is a strong gap (3) between
franao pages and other web sites pages.

1

2

3

franao.com : template 2

other sites

franao.com : template 1 (large)

franao.com : template 1 (small)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180 200

1
2

8
 k

ey
s

H
S

−
si

m
il

ar
it

y

row x 1000 (by decreasing HS−similarity)

HS−similarity to www.franao.com

Figure 4: By sorting all html documents by decreas-
ing hs-similarity with one reference page (here from
franao.com) we get a curve with different gaps. The
third gap (around 180, 000) marks the end of franao

web site.

Figure 5: franao.com template 1 (external links)

Figure 6: franao.com template 2 (internal links)

29

Table 1: Clusters with highest mean similarity and domain count
Urls Domains Mean Prototypical member (centröıd)

similarity
268 231 1 www.9eleven.com/index.html Copy/Paste

93148 313 0.58 www.les7laux.com/hiver/forum/phpBB2/membe. . . Template (Forums)

3495 255 0.33 www.orpha.net/static/index.html Template (Apache)

966 174 0.40 www.asliguruney.com/result.php?Keywords=m. . . Link farm
122 91 0.74 anus.fistingfisting.com/index.htm Copy/Paste

1148 173 0.38 www.basketmag.com/result.php?Keywords=gif. . . Link farm
19834 164 0.40 www.series-tele.fr/index.html?mo=serie t. . . Template

122 55 0.91 www.ie.gnu.org/philosophy/index.html Mirror
139 101 0.44 www.reha-care.net/home buying.htm?r=p Link farm
218 195 0.21 chat.porno-star.it/index.html Copy/Paste
177 60 0.67 www.ie.gnu.org/home.html Mirror

2288 44 0.90 www.cash4you.com/insuranceproviders/index. . . Link farm
626900 70 0.52 animalworld.petparty.com/automotivecenter. . . Link farm

168 96 0.32 www.google.ca/intl/en/index.html Mirror
214 61 0.50 shortcuts.00go.com/shorcuts.html Link farm

42314 112 0.26 forums.cosplay.com/index.html Template
121 63 0.41 collection.galerie-yemaya.com/index.html Copy/Paste
555 34 0.68 allmacintosh.digsys.bg/audiomac rating.h. . . Template
114 77 0.29 www.gfx-revolution.com/search/webarchiv.p. . . Link farm
286 60 0.35 gnu.typhon.net/home.sv.html Mirror

4.2 Global Clustering
To clusterize the whole corpus we need to raise the thresh-

old to ensure a low level of false positive. In our experiments
we chose n = 32, m = 128, k = 1, t = 35 and p = 20. With
a similarity score of at least 35/128, the number of misclas-
sified urls seems negligible but some clusters are split into
smaller ones.

We obtained 43, 000 clusters with at least 2 elements. The
table 1 shows the 20 clusters sorted by highest mean sim-
ilarity × domain count. (For the sake of readability some
mirror clusters have been removed from the list.)

In order to evaluate the quality of the clustering, the first
50 clusters, as well as 50 other randomly chosen ones, were
manually checked, showing no misclassified urls.

Most of the resulting clusters belong to one of these classes:

1. Template clusters groups html pages from dynamic
web sites using the same skeleton. The cluster #2
of figure 1 is a perfect example, it groups all forum
pages generated using the PhpBB open source project.
The cluster #3 is also interesting: it is populated by
Apache default directory listings;

2. Link farm clusters are also a special case of Tem-
plate. They contain numerous computer generated
pages, based on the same template and containing a
lot of hyperlinks between each other;

3. Mirrors clusters contain sets of near duplicate pages
hosted under different servers. Generally only minor
changes were applied to copies like adding a link back
to the server hosting the mirror;

4. Copy/Paste clusters contain pages that are not part of
mirrors, but do share the same content: either a text
(e.g. license, porn site legal warning. . .), a frameset
scheme, or the same javascript code (often with few
actual content).

Table 2: A sample template cluster
Url

1 www.les7laux.com/hiver/forum/phpBB2/me. . .
0.68 ksosclan.free.fr/phpBB2/login.php
0.67 www.quartertothree.com/phpBB2/profile.ph. . .
0.65 www.lirone.com/forum/login.php?redirect=. . .
0.64 www.francemule.com/forum/login.php?redir. . .
0.63 ksosclan.free.fr/phpBB2/login.php?redire. . .
0.62 90plan.ovh.net/ lillofor/login.php?redir. . .
0.60 www.artisanatweb.com/phpBB/viewtopic.php. . .
0.57 www.artisanatweb.com/phpBB/viewforum.ph. . .
0.54 www.dualforum.com/profile.php?mode=viewp. . .
0.53 www.dualforum.com/viewforum.php?f=52
0.56 bande2floydiens.free.fr/forum/posting.ph. . .
0.33 forum.p2pfr.com/posting.php?mode=quote&a. . .
0.28 a.chavasse.free.fr/phpBB2/viewtopic.php?. . .
0.25 www.e-hotellerie.com/forum/index.html?c=. . .

The first two cluster classes are the most interesting ben-
efit of the use of hss clustering. They allow an easy classi-
fication of web pages by categorizing a few of them.

Table 2 shows sample urls of a cluster with the associ-
ated similarity against the center of the cluster. This cluster
gathers urls from forum build with phpBB. Some of these
could have been classified with simple methods like a search
for the typical string “phpBB2” in the url, but this would
overlook some web sites that integrate phpBB with some
changes in the display style. Using hss algorithm allows to
gather those forums in the same cluster.

Classical algorithms for similarity could be used to extract
the last two cluster classes. Using hss algorithm enables to
quickly build a first clustering of the pages, and next use
more expensive methods to refine this clustering, reducing
the total computing time.

30

5. CONCLUSION
We presented in this paper a method to compute a dis-

tance based on html extra-textual features (Hidden Style
Similarity). A computationally efficient method to cluster
documents based on this similarity has been detailed, and
some results on a test corpus have been commented.

This method finds several uses in a search engine back-
office process: it makes it possible to cluster pages based on
the template and writing style. It enables to find particu-
lar instances of well-known pages genre such as forum pages
or Apache directory listings, so as to tag or skip them in a
search engine response list. Given a set of already known un-
desirable pages, other pages sharing the same template can
be sought after and tagged for deletion or editorial review.

Apart from the editorial detection of web spam, a com-
plementary useful process is to point out large clusters of
similar pages spanning several domains: this is often a good
hint of either sites mirroring or automatic spam pages gen-
eration, both things being valuable information to be pro-
cessed by a search engine back office.

6. REFERENCES
[1] A. Z. Broder. On the resemblance and containment of

documents. In Proceedings of Compression and
Complexity of Sequences, page 21, 1998.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. In Selected
papers from the sixth international conference on
World Wide Web, pages 1157–1166, Essex, UK, 1997.
Elsevier Science Publishers Ltd.

[3] D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics: using statistical analysis to
locate spam web pages. In WebDB ’04: Proceedings of
the 7th International Workshop on the Web and
Databases, pages 1–6, New York, NY, USA, 2004.
ACM Press.

[4] D. Fetterly, M. Manasse, and M. Najork. Detecting
phrase-level duplication on the world wide web. In
SIGIR ’05: Proceedings of the 28th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 170–177,
New York, NY, USA, 2005. ACM Press.

[5] A. Gray, P. Sallis, and S. MacDonell. Software
forensics: Extending authorship analysis techniques to
computer programs. In 3rd Biannual Conference of
International Association of Forensic Linguists (IAFL
’97), pages 1–8, 1997.

[6] Z. Gyöngyi and H. Garcia-Molina. Web spam
taxonomy. In First International Workshop on
Adversarial Information Retrieval on the Web
(AIRWeb), 2005.

[7] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen.
Combating web spam with trustrank. In VLDB, pages
576–587, 2004.

[8] N. Heintze. Scalable document fingerprinting. In 1996
USENIX Workshop on Electronic Commerce,
November 1996.

[9] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In Proc. of 30th STOC, pages 604–613,
1998.

[10] B. Kessler, G. Nunberg, and H. Schütze. Automatic

detection of text genre. In Proceedings of the 35th
Annual Meeting of the ACL and 8th Conference of the
EACL, pages 32–38, 1997.

[11] T. Lavergne. Unnatural language detection. In
Proceedings of RJCRI’06 : Young Scientists’
conference on Information Retrieval, 2006.

[12] T. McEnery and M. Oakes. Authorship identification
and computational stylometry. In Handbook of Natural
Language Processing. Marcel Dekker Inc., 2000.

[13] S. Meyer Zu Eissen and B. Stein. Genre classification
of web pages. In S. Biundo, T. Frühwirth, and
G. Palm, editors, Proceedings of KI-04, 27th German
Conference on Artificial Intelligence, Ulm, DE, 2004.
Published in LNCS 3238.

[14] C. J. Van Rijsbergen. Information Retrieval, 2nd
edition. Dept. of Computer Science, University of
Glasgow, 1979.

[15] A. Westbrook and R. Greene. Using semantic analysis
to classify search engine spam. Technical report,
Stanford University, 2002.

[16] J. Zobel and A. Moffat. Exploring the similarity
space. SIGIR Forum, 32(1):18–34, 1998.

31

32

Adversarial Information Retrieval Aspects of Sponsored
Search

Bernard J. Jansen

College of Information Sciences and Technology
The Pennsylvania State University
University Park, PA, 16801, USA

jjansen@acm.org

ABSTRACT
Search engines are commercial entities that require revenue
to survive. The most prevalent revenue stream for search
engines is sponsored search, where content providers have
search engines service their links to users in response to
queries or in a contextual manner on relevant Web sites. In
exchange for providing this service, content providers pay
search engines based on the number of clicks (i.e., a click
being a visit by a user to the content providers Web page).
This business model has proven to be very effective for the
search engines, content providers, and searchers. However,
click fraud, a unique form of adversarial information
retrieval, threatens this business model and, therefore, the
“free search” that has rapidly become indispensable to the
daily lives of many people. In this paper, we outline how
sponsored search is a unique form of information retrieval –
not just a mode of advertising, what is click fraud, how click
fraud happens, and what are some possible countermeasures.

1. INTRODUCTION
Web search engines provide information access to millions
of users per day. For many people, Web search engines are
now the primary method for finding information, news, and
products, according to a recent report on Internet usage [11].
Given this importance, there is increasing attention being
paid to search engine spam and other adversarial information
retrieval (IR) techniques by content providers to secure
undeserved highly ranked positions in the search engine
results listings. However, most of the attention in adversarial
IR is focused on the algorithmic listings.

Major search engines offer at least two types of results on a
search engine results page (SERP), non-sponsored and
sponsored results. Sponsored search is an increasingly
important, popular, and uniquely contextual form of
information interaction on the Web, and is subject to
spamming (i.e., click fraud). However, sponsored search and
adversarial techniques to subvert it have received little
attention in the research community. This lack of
consideration is surprising given that the negative effect of
spam on the sponsored search process may have greater
implications than on the algorithmic procedure.

Sponsored search is the process by which content providers
pay Web search engines to display specific links in response

to user queries alongside the algorithmic (a.k.a., organic or
non-sponsored) links. The sponsored search mechanism
plays a critical role in financing the “free” search provided
by search engines that have rapidly become essential to many
Web users. A distinctive type of interaction involving
information push-and-pull, sponsored search also is
increasingly important in locating information on the Web.
Because of the uniquely dynamic contextual relationship
among participants, sponsored search is a distinctive form of
IR, and there are significant social and political repercussions
if the process is significantly compromised.

In the paper, we provide an overview of sponsored search to
demonstrate that it is a unique form of IR and much more
than “just online advertising”, which may be a common
misperception [c.f., 13, 14]. We then discuss click fraud,
highlighting how the sponsored search process is susceptible
to spamming. We demonstrate how click fraud occurs. We
conclude with a discussion of the implications of click fraud
and possible mechanisms to combat it.

2. LITERATURE REVIEW
The primary business model for these search engines is
sponsored search, where commercial corporations, small
businesses, and other entities or individuals pay the search
engines to service links that appear on SERP when searchers
enter certain key phrases as queries. The content providers
may also pay to have their listings presented on Web sites
that the search engine’s or the content provider deem
relevant to the sponsored search links.

The economic impact of paid search is immense. Sponsored
search was an $8 billion industry in 2004 and vital to the
success of most major search engines. For example, Google
received 99% of its $3.1 billion revenue from paid search in
2004; Yahoo! received 84% of its $3 billion, and AOL
received 12% of its $1 billion, according to Tim McCarty of
Time magazine [12]. In 2005, Web search engines displayed
approximately 13 billion sponsored links in a given week,
according to Nielsen/NetRatings
(http://www.tekrati.com/firmnews/?id=5756). The
investment firm Piper Jaffray estimates that online
advertising will exceed $55 billion globally by 2010
(http://www.clickz.com/news/article.php/3569361). Without
a doubt, sponsored search is now and the foreseeable future
the primary business model for Web search engines [5].

Copyright is held by the author/owner(s).
AIRWeb'06, August 10, 2006, Seattle, Washington, USA.

For a review of how sponsored search works see [7].
Accounting is one reason that sponsored search is so popular
for businesses and organizations. In most models of

33

mailto:jjansen@acm.org
http://www.tekrati.com/firmnews/?id=5756
http://www.clickz.com/news/article.php/3569361

advertising, there is little accountable with the cost being
impressions (i.e., how many times and when a particular
advertisement is shown). However, this is also the key area
for an adversarial IR technique known as click fraud.

3. ADVERSARIAL IR ASPECT OF
SPONSORED SEARCH
Sponsored search significantly reduces spam content that
many times occurs with algorithmic listings. In fact, search
engine spam was the primary motivation for the development
of the sponsored search paradigm [1]. The reason that
sponsored search helped reduce spam is that there is a cost
motive for the provider and search engine to present relevant
content, and the search engines have review processes
consisting of both automated and manual aspects to help
ensure this. These monetary factors significantly reduce
spam content.

3.1 Click Fraud
However, there is the issue of click fraud with sponsored
search. Click fraud is the intentional clicking on a sponsored
link where the perpetrator does not intend to buy (or use) the
products or services advertised. We use the term “buy”, since
most sponsored links are ecommerce related. However, more
and more non-commercial entities are entering the sponsored
search market. So, “buy” may soon be too restrictive.
Regardless, click fraud is one of the fastest growing
problems on the Web, according to iProspect
(http://www.iprospect.com/media/newsletter_october_meech
.htm?ipsrc=media&reftype=pi&sptype=osmx). Click fraud
has not been widely perceived as search engine spamming
[6], but its negative effect is severe.
Click fraud can take various forms, but the final result is
usually the same. Content providers pay for unproductive
traffic generated by perpetrators who repeatedly click on a
content provider’s sponsored link with no intention of buying
anything. Click fraud produces revenue for the major search
engines and the Web sites that display the links. This is
because the clicks generate sales commissions based on the
content provider’s bid even if the click does not result in a
sale. In sponsored search, content providers are contractually
obligated to pay for all valid clicks. However, the search
engine has discretion over what is valid. According to [10],
based on an analysis of more than 1,000 content providers,
Google and Yahoo!’s sponsored search programs suffered a
click fraud rate of 12%, translating to more than $1.5 billion
of Google's ad revenue in 2005. The 12% click fraud rate
correlates well with that reported in [9]. However, some
content providers complain that their individual click fraud
rate is as high as 35% [10]. See [9] for an overview of the
click fraud issue.

3.2 Click Fraud Implementation
Why and how does click fraud occur? As for the why,
sometimes one content provider tries to deplete a
competitor’s sponsored search budget (most content
providers have monetary limits for any period). In other
instances, the owners of Web sites servicing sponsored links
click on these links to generate commissions for themselves.
Finally, some even more “ethically challenged” individuals

set up fictitious Web sites targeted at high payoff sponsored
terms. These Web sites exist solely to generate commissions
for clicks on sponsored links. The owners of these Web sites
typically use automated tools to both set up and generate
clicks.
In the first case, depleting a competitor’s budget, the
motivation is usually to increase the cost of advertising for
the other content provider, exhausting the rival’s budget.
Once the rival’s link has dropped out of the search engine’s
listing, more traffic is diverted to the remaining sponsored
links. This type of click fraud is fairly easy to implement. For
example, see Figure 2.
Figure 2 contains a snippet from a SERP, namely the
sponsored link section. From Figure 2, we see that the initial
query “Jim Jansen” retrieved three sponsored results with the
sponsored link Jim Jansen in the first position. With
repeated submissions of the query “Jim Jansen” and
subsequent clicks on the sponsored result, we see that the
link Jim Jansen soon drops out of the sponsored listing once
the daily budget has expired. The effects are (1) the content
provider of the link Jim Jansen pays the search engine for
each of these clicks, (2) once the budget for the link Jim
Jansen is exhausted that link no longer appears, depriving
the content provider of traffic, and (3) with the link Jim
Jansen gone, the other links move up in ranking. Studies
show that about 30% of searches involve a click on a
sponsored link [8] and that the higher a link is in the results
listing, the more visits that Web site will receive [2, 3].
For the other two cases of click fraud, the motivation is
money. This version of click fraud consists of Web site
owners who service sponsored content on their sites and then
click these links to generate commissions. See Figure 3 for
an example.
We see in Figure 3 that this particular Web site serves
contextual sponsored links from Google. Many times these
links appear during a normal visit to the Web site or one can
trigger their appearance via searching conducted on the Web
site. In Figure 3, the query “Jim Jansen” to the Web site’s
local content prompted the display of the sponsored link Jim
Jansen. By clicking on this sponsored link, the content
provider will pay the search engine, who will then split the
payment with the Web site owner.
Numerous software packages are available that will assist in
setting-up or nearly automatically setting-up a Web site
targeted at high pay-off key words, automate the clicks, and
disguise the Internet Protocol (IP) address. The process is
marketed as something easy to do, as shown in Figure 4.

3.3 Click Fraud Prevention
What are some potential click fraud countermeasures?
- Automated and Human Filters: Search engines
currently employ both automated and human filters in an
attempt to identify current and prevent future click fraud.
Search engine also appear to be making reasonable attempts
to reimburse or not charge clients for click identified as click
fraud. However, given the string of class action lawsuits, it is
apparent significantly more needs to be done.

34

http://www.iprospect.com/media/newsletter_october_meech.htm?ipsrc=media&reftype=pi&sptype=osmx
http://www.iprospect.com/media/newsletter_october_meech.htm?ipsrc=media&reftype=pi&sptype=osmx

Figure 2. An Example of Click Fraud on the Sponsored Listings of a Web Search Engine.

Figure 3. An Example of Contextual Link Where Click Fraud Can Occur.

Figure 4. A Sponsored Link Concerning Google’s AdSense Program.
Certainly, more sophisticated automated filters and data
mining techniques need to be employed, more human effort
needs to be engaged, and much better communication about
these efforts to the customers and public.

- Pay-per-action Paradigm: One partial solution is a
shift in paradigm from pay-per-click to pay-per-action. With
pay-per-action, the advertiser only pays if the visitor actually
executes an action, such as purchasing a product. However,
pay-per-action is not the total answer though, as research

35

reports that many searchers visit a sponsored link multiple
times before a purchase [4]. Additionally, some of the traffic
generated should be based on the ability of the content
provider to construct enticing sponsored links.
- Block Blacklisted IP addresses: There are various
databases of blacklisted IPs (c.f.,
http://www.declude.com/Articles.asp?ID=97 and
http://www.moensted.dk/spam/), which maintain lists of IPs
that are know email spammer sites. These spam lists are also
known as Realtime Blackhole List (RBL). The company
Mail Abuse Prevention System (MAPS) LLC actively
maintains records of RBLs. These are IP addresses whose
owners refuse to stop others from using their servers for
spam. Email servers routinely block messages from these
IPs. However, click fraud perpetrators also use these IP. It
would seem reasonable that the search engines could take
measures to block clicks from these IPs or reimburse content
providers for clicks from these IP addresses.
- Aggressive monitoring of click fraud perpetrators:
Click fraud is similar to what occurred in the online music
industry. The Recording Industry Association of America’s
(RIAA) campaign against illegal file sharing via peer-to-peer
networks is a good example of the effect that an aggressive
operation can achieve (c.f.,
http://www.techweb.com/wire/story/TWB20031105S0006).
The RIAA’s effort significantly reduced illegal copying of
copyrighted audio files. Many content providers have been
critical of the major search engines for their lack of
aggressive pursuit of click fraud abusers. Aggressive action
against click fraud would raise the cost of click fraud, and
could reduce the number of folks doing it.
- Search engines must make efforts to ensure trust: In
sponsored search, content providers sign contracts to pay for
all valid clicks, with the search engine determining what is a
valid click. Trust is a, if not the, critical element in the
sponsored search paradigm. Although the major search
engines do make efforts to identify click fraud, sponsored
search is not subject to independent auditing. San Antonio-
based Click Forensics Inc. recently set up a free service that
intends to issue quarterly reports on the frequency of click
fraud [10]. Whether through independent auditing or internal
efforts, content providers and searchers must have trust in the
process if it is to be a long-term business model.

4. CONCLUSION
It appears that the sponsored search model will have
increasing impact as new players enter the field. Within this
extremely dynamic paradigm, click fraud threatens the entire
process. Although media reports rates as high as 50%,
studies in the area indicate click fraud rates of between 12%
and 16% [9]. This translates into billions of dollars per year,
and it jeopardizes the entire model as it decreases trust in the
system, which is the basis of any IR process. In this regard,
the onus is on the search engines and related researchers to
develop methods to combat this threat. These methods run
the gamut from technological, to business processes, to
regulatory measures.

5. REFERENCES
[1] Battelle, J., The Search: How Google and Its Rivals

Rewrote the Rules of Business and Transformed our
Culture. New York: Penguin Group, 2005.

[2] Brooks, N., The Atlas Rank Report I: How Search
Engine Rank Impacts Traffic, Accessed on 1 August
2004 on the World Wide Web at
http://www.atlasdmt.com/media/pdfs/insights/RankRep
ort.pdf.

[3] Brooks, N., The Atlas Rank Report II: How Search
Engine Rank Impacts Conversions, Accessed on 15
January 2005 on the World Wide Web at
http://www.atlasonepoint.com/pdf/AtlasRankReportPart
2.pdf.

[4] Brooks, N., Repeat Search Behavior: Implications for
Advertisers, Bulletin of the American Society for
Information Science and Technology, vol. 32, pp. 16-17,
2006.

[5] Chiang, K.-P., Clicking Instead of Walking: Consumers
Searching for Information in the Electronic
Marketplace, Bulletin of the American Society for
Information Science and Technology, vol. 32, pp. 9-10,
2006.

[6] Gyongyi, Z. and Garcia-Molina, H., Web Spam
Taxonomy, in Proceedings of the First International
Workshop on Adversarial Information Retrieval on the
Web (AIRWeb '05), the 14th International World Wide
Web Conference (WWW2005), 2005. Chiba, Japan. 10-
14 May. pp. 39-47.

[7] Jansen, B. J., Paid Search, IEEE Computer,
Forthcoming.

[8] Jansen, B. J. and Resnick, M., An examination of
searchers' perceptions of non-sponsored and sponsored
links during ecommerce Web searching, Journal of the
American Society for Information Science and
Technology, forthcoming.

[9] Kitts, B., LeBlanc, B., Meech, R., and Laxminarayan,
P., Click Fraud, Bulletin of the American Society for
Information Science and Technology, vol. 32, pp. 14-16,
2005.

[10] Liedtke, M., Click Fraud Concerns Hound Google, in
ABC News Money, 2006
http://abcnews.go.com/Technology/wireStory?id=19346
55&CMP=OTC-RSSFeeds0312.

[11] Madden, M., Internet Penetration and Impact, Accessed
on 9 May 2006 on the World Wide Web at
http://www.pewinternet.org/PPF/r/182/report_display.as
p.

[12] McCarthy, T., Yahoo! Goes to Hollywood, Time, vol.
165, pp. 50-53, 2005.

[13] Metaxas, P. T. and DeStefano, J., Web Spam,
Propaganda and Trust, in Proceedings of the First
International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb '05), the 14th
International World Wide Web Conference
(WWW2005), 2005. Chiba, Japan. 10-14 May. pp. 70-
78.

[14] Nicholson, S., Sierra, T., Eseryel, U. Y., Park, J.-H.,
Barkow, P., Pozo, E. J., and Ward, J., How much of it is
real? Analysis of paid placement in Web search engine
results, Journal of the American Society of Information
Science and Technology, vol. 57, pp. 448-461, 2006.

36

http://www.declude.com/Articles.asp?ID=97
http://www.moensted.dk/spam/
http://www.webopedia.com/TERM/R/IP_address.htm
http://www.techweb.com/wire/story/TWB20031105S0006
http://www.atlasdmt.com/media/pdfs/insights/RankReport.pdf
http://www.atlasdmt.com/media/pdfs/insights/RankReport.pdf
http://www.atlasonepoint.com/pdf/AtlasRankReportPart2.pdf
http://www.atlasonepoint.com/pdf/AtlasRankReportPart2.pdf
http://abcnews.go.com/Technology/wireStory?id=1934655&CMP=OTC-RSSFeeds0312
http://abcnews.go.com/Technology/wireStory?id=1934655&CMP=OTC-RSSFeeds0312
http://www.pewinternet.org/PPF/r/182/report_display.asp
http://www.pewinternet.org/PPF/r/182/report_display.asp

Web Spam Detection with Anti-Trust Rank

Vijay Krishnan
Computer Science Department

Stanford University
Stanford, CA 4305

vijayk@cs.stanford.edu

Rashmi Raj
Computer Science Department

Stanford University
Stanford, CA 4305

rashmi@cs.stanford.edu

ABSTRACT
Spam pages on the web use various techniques to artificially
achieve high rankings in search engine results. Human ex-
perts can do a good job of identifying spam pages and pages
whose information is of dubious quality, but it is practi-
cally infeasible to use human effort for a large number of
pages. Similar to the Trust Rank algorithm [1], we propose
a method of selecting a seed set of pages to be evaluated by
a human. We then use the link structure of the web and the
manually labeled seed set, to detect other spam pages. Our
experiments on the WebGraph dataset [3] show that our ap-
proach is very effective at detecting spam pages from a small
seed set and achieves higher precision of spam page detec-
tion than the Trust Rank algorithm, apart from detecting
pages with higher pageranks [10, 11], on an average.

1. INTRODUCTION
The term Web Spam refers to the pages that are created

with the intention of misleading a search engine [1]. In or-
der to put the tremendous amount of information on the
web to use, search engines need to take into account the
twin aspects of relevance and quality. The high commer-
cial value associated with a web page appearing high on the
search results of popular search engines, has led to several
pages attempting spamdexing i.e. using various techniques
to achieve higher-than-deserved rankings. Though it is not
difficult for a human expert to recognize a spam web page,
it is a challenging task to automate the same, since spam-
mers are constantly coming up with more and more sophis-
ticated techniques to beat search engines. Recent work [1],
addressed the problem of Web Spam detection by exploiting
the intuition that good pages i.e. those of high quality are
very unlikely to point to spam pages or pages of low qual-
ity. They propagate Trust from the seed set of good pages
recursively to the outgoing links. However, sometimes spam
page creators manage to put a link to a spam page on a
good page, for example by leaving their link on the com-
ments section of a good page, or buy an expired domain.
Thus, the trust propagation is soft and is designed to atten-
uate with distance. The Trust Rank approach thus starts
with a seed set of trusted pages as the teleport set [2] and
then runs a biased page-rank algorithm. The pages above a
certain threshold are deemed trustworthy pages. If a page
has a trust value below a chosen threshold value then it is

Copyright is held by the author/owner(s).
AIRWEB’06, August 10, 2006, Seattle, Washington, USA.

marked as spam.
In our work, we exploit the same intuition, in a slightly

different way. It follows from the intuition of [1] that it
is also very unlikely for spam pages to be pointed to by
good pages. Thus we start with a seed set of spam pages
and propagate Anti Trust in the reverse direction with the
objective of detecting the spam pages which can then be
filtered by a search engine.

We find that on the task of finding spam pages with high
precision, our approach outperforms Trust Rank. We also
empirically found that the average page-rank of spam pages
reported by Anti-Trust rank was typically much higher than
those by Trust Rank. This is very advantageous because
filtering of spam pages with high page-rank is a much bigger
concern for search engines, as these pages are much more
likely to be returned in response to user queries.

1.1 Our Contributions

• We introduce the Anti-Trust algorithm with an intu-
ition similar to [1], for detecting untrustworthy pages.

• We show that it is possible to use a small seed set of
manually labeled spam pages, and automatically de-
tect several spam pages with high precision.

• We propose a method for selecting seed sets of pages
to be manually labeled.

• We experimentally show that our method is very effec-
tive both at detecting spam pages as well as detecting
spam pages with relatively high PageRanks.

2. ANTI-TRUST RANK
Our approach is broadly based on the same approximate

isolation principle [1], i.e it is rare for a good page to point
to a bad page. This principle also implies that the pages
pointing to spam pages are very likely to be spam pages
themselves. The Trust Rank algorithm started with a seed
set of trustworthy pages and propagated Trust along the
outgoing links. Likewise, in our Anti-Trust Rank algorithm,
Anti-Trust is propagated in the reverse direction along in-
coming links, starting from a seed set of spam pages. We
could classify a page as a spam page if it has Anti-Trust
Rank value more than a chosen threshold value. Alterna-
tively, we could choose to merely return the top n pages
based on Anti-Trust Rank which would be the n pages that
are most likely to be spam, as per our algorithm.

Interestingly, both Trust and Anti-Trust Rank approaches
need not be used for something very specific like detecting

37

link spam alone. The approximate isolation principle can in
general enable us to distinguish good pages from the not-so-
good pages such as pages containing pornography and those
selling cheap medication. Thus, for the purpose of our work
we consider pages in the latter category as spam as well.

2.1 Selecting the Seed Set of Spam pages
We have similar concerns to [1], with regard to choosing

a seed set of spam pages. We would like a seed set of pages
from which Anti-Trust can be propagated to many pages
with a small number of hops. We would also prefer if a seed
set can enable us to detect spam pages having relatively high
PageRanks. In our approach, choosing our seed set of spam
pages from among those with high PageRank satisfies both
these objectives.

Pages with high PageRank are those from which several
pages can be reached in a few hops if we go backward along
the incoming links. Thus this helps in our first objective.
Also, having high PageRank pages in our seed set makes
it somewhat more probable that the spam pages we de-
tect would also have high PageRanks, since high PageRanks
pages often get pointed to by other pages with high PageR-
ank. We therefore select our seed set of spam pages from
among the pages with high PageRank. This helps us nail
our twin goals of fast reachability and detection of spam
pages with high PageRank.

2.2 The Anti-Trust Algorithm

• Obtain a seed set of spam pages labeled by hand. As-
sign pages with high PageRanks for labeling by a hu-
man in order to get a seed set containing high PageR-
ank pages.

• Compute T to be the Transpose of the binary web-
graph matrix.

• Run the biased PageRank algorithm on the matrix T,
with the seed set as the teleport set.

• Rank the pages in descending order of PageRank scores.
This represents an ordering of pages based on esti-
mated Spam content. Alternatively, set a threshold
value and declare all pages with scores greater than
the threshold as spam.

3. EXPERIMENTS

3.1 Dataset
We ran our experiments on the WebGraph dataset, [3].

We chose data corresponding to a 2002 crawl of the “uk”
domain containing about 18.5 millions nodes and 300 million
links.

3.2 Evaluation Metric
Clearly, the only perfect way of evaluating our results is

to manually check if the pages with high Anti-Trust score
are indeed spam pages and vice-versa. It was observed in
[1] that this process is very time consuming and often hard
to do in practice.

We however circumvented this problem by coming up with
a heuristic which in practice selects spam pages with nearly

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

Number of documents returned

P
er

ce
nt

ag
e

of
 s

pa
m

 p
ag

es
 fo

un
d

% of spam pages

40% 39%

25.3%

12.31%

1.721%

0.28%

0.68%

Spam pages by anti−trust rank
Average spam pages
spam pages by trust rank

Figure 1: Comparison of the precisions of Anti-
Trust Rank and Trust Rank at various levels of re-
call, against the naive baseline of total percentage of
spam documents in the corpus. It can be seen what
Anti-Trust Rank does significantly better than Trust
Rank which is in turn clearly better than the naive
baseline.

100% precision and also a recall which is a reasonable frac-
tion of the set of true spam pages, on our dataset.

The Heuristic: We compiled a list of substrings whose
presence in a URL almost certainly indicated that it was a
spam page, on our dataset. As one would expect, our list
contained strings like viagra, casino and hardporn. Thus,
this heuristic enables us to measure the performance of our
Anti-Trust Rank algorithm and compare it against the Trust
Rank algorithm with a good degree of reliability. It seems
reasonable to expect that the relative scores obtained by
the spam detection algorithms with the evaluation being
heuristic based would be representative of their actual per-
formance in spam detection, since our heuristic has a pretty
reasonable recall and is independent of both the Trust Rank
and Anti-Trust Rank algorithms and would not give the al-
gorithms we are looking at, an unfair advantage.

As per this heuristic, out of the 18,520,486 pages, 0.28 %
i.e. 52,285 were spam pages.

3.3 Choosing the Seed Set
We chose the top 40 pages based on page rank from among

the URLs that got flagged as spam by our heuristic. For
comparing with Trust-Rank we picked the top 40 pages
based on inverse page rank, among the pages marked non-
spam by our heuristic. We also manually confirmed that the
seed sets were indeed spam in the former cases and trust-
worthy pages in the latter case. We also studied the effect
of increasing the seed set size in Anti-Trust rank. We found
that we could benefit substantially from a larger seed set.
Also we used the common α value of 0.85 i.e. the probability
of teleporting to a seed node was 0.15.

3.4 Results and Analysis
From figure 1, we can see that both Anti-Trust Rank and

38

Figure 3: Comparison of the performance of Trust Rank with a seed set of 40 pages against Anti-Trust rank
with 40, 80 and 120 pages respectively. The X-axis represents the number of documents selected having the
highest Anti-Trust and lowest Trust scores. The Y-axis depicts, how many of those documents were actually
spam(as measured by our heuristic). We observe that Anti-Trust rank typically has a much higher precision
of reporting spam pages than Trust rank. Also, Anti-Trust rank benefits immensely with increasing seed-set
size.

10
2

10
3

10
4

10
5

10
−8

10
−7

10
−6

Number of documents returned

A
ve

ra
ge

 P
ag

e
R

an
k

V
al

ue

Page Rank comparison for spam pages

1.4e−007

6.71e−008
5.85e−008

6.95e−008

4.07e−008

1.1e−008

Averageg page rank of Spam pages by anti−trust rank
Average page rank of spam pages
Averageg page rank of spam pages by trust rank

Figure 2: Comparison of the page ranks of spam
pages returned by Anti-Trust Rank and Trust Rank
at various levels of recall, against the baseline of av-
erage page rank of spam pages in the corpus. It can
be seen that while Anti-Trust Rank returns spam
pages with higher-than-average page ranks, Trust
Rank returns spam pages with clearly lower-than-
average page ranks.

Trust Rank are significantly better than the naive baseline
corresponding to a random ordering of the pages, for which
the precision of reporting spam would merely be the per-
centage of spam pages in the corpus. However we also see
that Anti-Trust rank typically does much better than Trust
Rank at different levels of recall.

This is intuitive because Trust Rank is capable of report-
ing with high confidence that the pages reachable in short
paths from its seed set are trustworthy, while it cannot be
expected to say anything with high confidence about pages
that are far away from the seed set. Likewise our Anti-Trust
Rank approach is capable of reporting with high confidence
that the pages from which its seed set can be reached in
short paths are untrustworthy.

Also, from figure 2, we find that the average rank of spam
pages returned by Trust Rank is even lower than the aver-
age page rank of all spam pages. Anti-Trust rank however
manages to return spam pages whose average page rank is
substantially above the overall average page rank of all spam
pages. The ratio of average page ranks of spam pages re-
ported by Anti-Trust Rank and Trust rank was over 6:1
for different levels of recall. Thus, Anti-Trust rank has the
added benefit of returning spam pages with high page rank,
despite the fact that it has a significantly higher precision
than Trust Rank at all levels of recall that we explored.

This is intuitive because, by starting with seed spam pages
of high page rank, we would expect that walking backward
would lead to a good number of spam pages of high page
rank.

Figure 3 compares the performance of Trust Rank against
Anti-Trust rank with an equal seed size of 40 and also show
performance of Anti-Trust Rank with larger seed sets of 80
and 120 respectively. It shows the precisions achieved by

39

Trust Rank and Anti-Trust Rank at various levels of re-
call such as 10, 100, 1000, 10000 and 100000 web pages.
We find that apart from achieving better precision of spam
page detection than Trust Rank for the same seed set size,
increasing the seed set size in Anti-Trust rank can lead to
dramatic improvement in performance.

An analysis of success of these algorithms in picking trust-
worthy pages would not be very useful. This is because our
corpus has over 99% trustworthy pages, and it would be very
hard to conclude anything about the performance of these
algorithms given that they would all attain a precision of
well over 99% and would differ merely by a tiny fraction of
a percent.

4. RELATED WORK
The BadRank algorithm [13] relies on intution similar to

ours, namely that pages pointing to spam pages are likely
to be spam themselves. The SpamRank algorithm [12] at-
tempts to tackle link spam and assumes that spam pages
have a biased distribution and attempts to compute the ex-
tent of underserved pagerank for a web page. The taxonomy
of web spam has been well defined by [4]. There are many
pieces of work on combating link spam. The problem of trust
has also been studied in other distributed fields such as P2P
systems [5]. Other approaches rely on detecting anomalies in
statistics gathered through web crawls [7]. Approaches such
as [8], focus on higher-level connectivity between sites and
between top-level domains for identifying link spams. The
data mining and web mining community has also worked on
identifying link farms. Various farm structures and alliances
that can impact ranking of a page has been studies by [6].
[9] identifies link farm spam pages by looking for certain
patterns in the webgraph structure.

5. CONCLUSION AND FUTURE WORK
We have proposed the Anti-Trust Rank algorithm, and

shown that it outperforms the Trust Rank algorithm at the
task of detecting spam pages with high precision, at various
levels of recall. Also, we show that our algorithm tends to
detect spam pages with relatively high PageRanks, which is
a very desirable objective.

It would be interesting to study the effect of combining
these both the Trust Rank and Anti-Trust Rank methods
especially on data containing a very high percentage of spam
pages. It would also be interesting to attempt combining
these link-based spam detection techniques with techniques
that take text into account, such as text classifiers trained
to detect spam pages.

Acknowledgements
We would like to thank Zoltán Gyöngyi, Dr. Anand Rajara-
man and Dr. Jeffrey D. Ullman for helpful discussions. We
would also like to express our gratitude to Paolo Boldi and
Sebastiano Vigna whose compressed WebGraph dataset, with
its useful Java API’s made it very convenient for us to run
experiments on a significant sized subgraph of the web.

6. REFERENCES
[1] Combating Web Spam with Trust Rank. Z. Gyöngyi,

H. Garcia-Molina and J. Pedersen. Proc. of the 30st
International Conference on Very Large Data Bases
(VLDB), 2004.

[2] Topic-sensitive Page Rank. Taher Haveliwala. Proc. of
the 11th International World Wide Web Conference,
2002.

[3] The WebGraph dataset. Online at:
http://webgraph-data.dsi.unimi.it/

[4] Web Spam Taxonomy. Zoltán Gyöngyi, Hector
Garcia-Molina. Proc. of the First International
Workshop on Adversarial Information Retrieval on the
Web (at the 14th International World Wide Web
Conference), 2005.

[5] The EigenTrust algorithm for reputation management
in P2P networks. S. Kamvar, M. Schlosser, and H.
Garcia-Molina. Proc. of the Twelfth International
World Wide Web Conference, 2003.

[6] Link Spam Alliances. Zoltán Gyöngyi, Hector
Garcia-Molina. Proc. of the 31st International
Conference on Very Large Data Bases (VLDB), 2005.

[7] Spam, Damn Spam, and Statistics. Dennis Fetterly,
Mark Manasse and Marc Najork. Proc. of the Seventh
International Workshop on the Web and Databases
(WebDB 2004), 2004, Paris, France.

[8] Links to Whom: Mining Linkage between Web Sites.
K. Bharat, B. Chang, M. Henzinger, and M. Ruhl.
Proc. of the IEEE International Conference on Data
Mining, 2001.

[9] Identifying Link Farm Spam Pages. Baoning Wu,
Brian D. Davison. Proc. of the 14th International
World Wide Web Conference, 2005.

[10] The PageRank citation ranking: Bringing order to the
web. L. Page, S. Brin, R. Motwani and T. Winograd.
Technical Report, Stanford University, 1998.

[11] The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Sergey Brin and Lawrence Page. Proc.
of the 7th International World Wide Web Conference,
1998.

[12] SpamRank Fully Automatic Link Spam Detection.
Andras A. Benczur, Karoly Csalogany, Tamas Sarlos,
Mate Uher. Proc. of the First International Workshop
on Adversarial Information Retrieval on the Web (at
the 14th International World Wide Web Conference),
Chiba, Japan, 2005.

[13] BadRank. Online at: http://pr.efactory.de/e-pr0.shtml

40

	FINALFIXED_becchetti_2006_linkbased.pdf
	Introduction
	Web spam
	Topological spam (link spam)
	Our contribution

	Framework
	Web graph algorithms
	Data set
	Automatic classification

	Metrics
	Degree-based measures
	PageRank
	TrustRank
	Truncated PageRank
	Estimation of supporters
	Everything

	Conclusions and Future Work
	References

	SimSpam.pdf
	Introduction
	Related results
	PageRank based trust and distrust propagation
	Similarity search, HITS and spam
	Spam data sets and methodology

	The similarity based spam detection algorithms
	SimRank
	Companion and SVD

	Experiments
	Data sets
	Evaluation by cross-validation
	Baseline results
	Similarity based features
	Comparison of best features

	Conclusions
	Acknowledgement
	References

	Kumar-final.pdf
	hiddenstyle.pdf
	jansen_AIR06_short.pdf
	INTRODUCTION
	LITERATURE REVIEW
	ADVERSARIAL IR ASPECT OF SPONSORED SEARCH
	Click Fraud
	Click Fraud Implementation
	Click Fraud Prevention

	CONCLUSION
	REFERENCES

	stanford.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

