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What is on the Web?

Information + Porn + On-line casinos + Free movies +
Cheap software + Buy a MBA diploma + Prescription -free
drugs + V!-4-gra + Get rich now now now!!!

Graphic: www.milliondollarhomepage.com
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Web spam (keywords + links)
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Web spam (mostly keywords)
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Search engine?
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Fake search engine
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Problem: “normal” pages that are spam
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Link farms

Single-
level farms can be detected by searching groups of nodes
sharing their out-links [Gibson et al., 2005]
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Motivation

[Fetterly et al., 2004] hypothesized that studying the
distribution of statistics about pages could be a good way of
detecting spam pages:

“in a number of these distributions, outlier values are
associated with web spam”

Research goal

Statistical analysis of link-based spam
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Metrics

Graph algorithms

Streamed algorithms

Symmetric algorithms

All shortest paths, centrality, betweenness, clustering coefficient... 

(Strongly) connected components
Approximate count of neighbors
PageRank, Truncated PageRank, Linear Rank
HITS, Salsa, TrustRank

Breadth-first and depth-first search
Count of neighbors
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Test collection

U.K. collection

18.5 million pages downloaded from the .UK domain

5,344 hosts manually classified (6% of the hosts)

Classified entire hosts:

V A few hosts are mixed: spam and non-spam pages

X More coverage: sample covers 32% of the pages
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Degree
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(δ = max. difference in C.D.F. plot)
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Degree
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Edge reciprocity
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Assortativity
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Automatic classifier

All of the following attributes in the home page and the page
with the maximum PageRank, plus a binary variable
indicating if they are the same page:

- In-degree, out-degree
- Fraction of reciprocal edges
- Degree divided by degree of direct neighbors
- Average and sum of in-degree of out-neighbors
- Average and sum of out-degree of in-neighbors

Decision tree

72.6% of detection rate, with 3.1% false positives
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PageRank

Let PN×N be the normalized link matrix of a graph

Row-normalized

No “sinks”

Definition (PageRank)

Stationary state of:

αP +
(1− α)

N
1N×N

Follow links with probability α

Random jump with probability 1− α
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Maximum PageRank in the Host
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Variance of PageRank

Suggested in [Benczúr et al., 2005]

PageRank PageRank
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Variance of PageRank of in-neighbors
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Automatic classifier

Features: degree-based plus the following in the home page
and the page with maximum PageRank:

- PageRank
- In-degree/PageRank
- Out-degree/PageRank
- Standard deviation of PageRank of in-neighbors = σ2

- σ2/PageRank

Plus the PageRank of the home page divided by the
PageRank of the page with the maximum PageRank.

Decision tree

74.4% of detection rate, with 2.6% false positives
(Degree-based: 72.6% of detection, 3.1% false positives)
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TrustRank

TrustRank [Gyöngyi et al., 2004]

A node with high PageRank, but far away from a core set of
“trusted nodes” is suspicious

Start from a set of trusted nodes, then do a random walk,
returning to the set of trusted nodes with probability 1− α at
each step

i Trusted nodes: data from http://www.dmoz.org/
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TrustRank score
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TrustRank / PageRank
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Automatic classifier

PageRank attributes, plus the following in the home page and
the page with maximum PageRank:

- TrustScore
- TrustScore/PageRank (estimated relative non-spam mass)
- TrustScore/In-degree

Plus the TrustScore in the home page divided by the
TrustScore in the page with the maximum PageRank.

Decision tree

77.3% of detection rate, with 3.0% false positives
(PageRank-based: 74.4% of detection, 2.6% false positives)
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Path-based formula for PageRank

Given a path p = 〈x1, x2, . . . , xt〉 of length t = |p|

branching(p) =
1

d1d2 · · · dt−1

where di are the out-degrees of the members of the path

Explicit formula for PageRank [Newman et al., 2001]

ri (α) =
∑

p∈Path(−,i)

(1− α)α|p|

N
branching(p)

Path(−, i) are incoming paths in node i
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General functional ranking

In general:

ri (α) =
∑

p∈Path(−,i)

damping(|p|)
N

branching(p)

There are many choices for damping(|p|), including a simple
linear function that is as good as PageRank in practice
[Baeza-Yates et al., 2006]
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Truncated PageRank

Reduce the direct contribution of the first levels of links:

damping(t) =

{
0 t ≤ T

Cαt t > T

V No extra reading of the graph after PageRank
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Truncated PageRank(T=2) / PageRank
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Max. change of Truncated PageRank
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Automatic classifier

PageRank attributes, plus the following in the home page and
the page with maximum PageRank:

- TruncPageRank(T = 1 . . . 4)
- TruncPageRank(T = 4) / TruncPageRank(T = 3)
- TruncPageRank(T = 3) / TruncPageRank(T = 2)
- TruncPageRank(T = 2) / TruncPageRank(T = 1)
- TruncPageRank(T = 1 . . . 4) / PageRank
- Minimum, maximum and average of:
TruncPageRank(T = i)/TruncPageRank(T = i − 1)

Plus the TruncatedPageRank(T = 1 . . . 4) of the home page
divided by the same value in the page with the maximum
PageRank.

Decision tree

76.9% of detection rate, with 2.5% false positives
(TrustRank-based: 77.3% of detection, 3.0% false positives)
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Idea: count “supporters” at different distances

Number of different nodes at a given distance:

.UK 18 mill. nodes .EU.INT 860,000 nodes
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High and low-ranked pages are different
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strongly-connected component
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Probabilistic counting
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Improvement of ANF algorithm [Palmer et al., 2002] based on
probabilistic counting [Flajolet and Martin, 1985]
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General algorithm

Require: N: number of nodes, d: distance, k: bits
1: for node : 1 . . . N, bit: 1 . . . k do
2: INIT(node,bit)
3: end for
4: for distance : 1 . . . d do {Iteration step}
5: Aux ← 0k

6: for src : 1 . . . N do {Follow links in the graph}
7: for all links from src to dest do
8: Aux[dest] ← Aux[dest] OR V[src,·]
9: end for

10: end for
11: V ← Aux
12: end for
13: for node: 1 . . .N do {Estimate supporters}
14: Supporters[node] ← ESTIMATE( V[node,·] )
15: end for
16: return Supporters
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Our estimator

Initialize all bits to one with probability ε

Estimator: neighbors(node) = log(1−ε)

(
1− ones(node)

k

)
Adaptive estimation

Repeat the above process for ε = 1/2, 1/4, 1/8, . . . , and look
for the transitions from more than (1− 1/e)k ones to less
than (1− 1/e)k ones.
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Convergence
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Error rate
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Ours 64 bits, epsilon−only estimator
Ours 64 bits, combined estimator
ANF 24 bits × 24 iterations (576 b×i)
ANF 24 bits × 48 iterations (1152 b×i)
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Hosts at distance 4
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Minimum change of supporters
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Automatic classifier

PageRank attributes, plus the following in the home page and
the page with maximum PageRank:

- Supporters at 2 . . . 4
- Supporters at 2 . . . 4 / PageRank
- Supporters at i / Supporters at i − 1 (for i = 1..4)
- Minimum, maximum and average of: Supporters at i /
Supporters at i − 1 (for i = 1..4)
- (Supporters at i - Supporters at i − 1) / PageRank

Plus the number of supporters at distance 2 . . . 4 in the home
page divided by the same feature in the page with the
maximum PageRank.

Decision tree

78.9% of detection rate, with 2.5% false positives
(TruncPR: 76.9% of detection, 2.5% false positives)

(TrustRank: 77.7% of detection, 3.0% false positives)
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Summary of classifiers

Detection False
Metrics rate positives

Degree (D) 72.6% 3.1%
D + PageRank (P) 74.4% 2.6%
D + P + TrustRank 77.7% 3.0%
D + P + Trunc. PageRank 76.9% 2.5%
D + P + Est. of Supporters 78.9% 2.5%

All attributes 81.4% 2.8%
All attributes (more rules) 80.8% 1.1%

Comparison

Content-based analysis [Ntoulas et al., 2006] has shown
86.2% detection rate with 2.2% false positives

Classifier based on TrustRank [Gyöngyi et al., 2004]:
49%-50% of detection rate with 2.3%-2.1% error in our
sample – SpamRank [Benczúr et al., 2005] reports similar
detection rates
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Top 10 metrics

1. Binary variable indicating if homepage is the page with
maximum PageRank of the site
2. Edge reciprocity
3. Different hosts at distance 4
4. Different hosts at distance 3
5. Minimum change of supporters (different hosts)
6. Different hosts at distance 2
7. TruncatedPagerank (T=1) / PageRank
8. TrustRank score divided by PageRank
9. Different hosts at distance 1
10. TruncatedPagerank (T=2) / PageRank
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Conclusions

V Link-based statistics to detect 80% of spam

X No magic bullet in link analysis

X Precision still low compared to e-mail spam filters

V Measure both home page and max. PageRank page

V Host-based counts are important

Further results at WebKDD 2006 Next step: combine link
analysis and content analysis
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If you want privacy, spamize your data!

Thank you!

Questions?

Soon: Spam detection test collection: 11,000 classified hosts
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