
Tracking Web Spam with Hidden Style Similarity

Tanguy Urvoy, Thomas Lavergne, Pascal Filoche

France Telecom R&D
∗

{tanguy.urvoy,thomas.lavergne,pascal.filoche}@orange-ft.com

ABSTRACT
Automatically generated content is ubiquitous in the web:
dynamic sites built using the three-tier paradigm are good
examples (e.g. commercial sites, blogs and other sites pow-
ered by a web authoring software), as well as less legitimous
spamdexing attempts (e.g. link farms, faked directories. . . ).

Those pages built using the same generating method (tem-
plate or script) share a common “look and feel” that is not
easily detected by common text classification methods, but
is more related to stylometry.

In this paper, we present a (hidden) style similarity mea-
sure based on extra-textual features in html source code.
We also describe a method to clusterize a large collection of
documents according to this measure. The clustering algo-
rithm being based on fingerprints, we also give some recalls
about fingerprinting.

By conveniently sorting the generated clusters, one can ef-
ficiently track back instances of a particular automatic con-
tent generation method among web pages collected using
a crawler. This is particularly useful to detect pages across
different sites sharing the same design — this is often a good
hint of either spamdexing attempt or mirrored content.

1. INTRODUCTION
Automatically generated content is nowadays ubiquitous

on the web, especially with the advent of professional web
sites and popular three-tier architectures such as “LAMP”
(Linux Apache Mysql Php). Generation of these pages using
such architecture involves:

• a scripting component;

• a page template (“skeleton” of the site pages);

• content (e.g. product catalog, articles repositery. . . ),
usually stored in databases.

When summoned, the scripting component combines the
page template with information from the database to gener-
ate an html page, having no difference with a static html
page from a robot crawler point of view (shall robots have
point of view).

∗Thomas Lavergne also ENST Paris

Copyright is held by the author/owner(s).
AIRWEB’06, August 10, 2006, Seattle, Washington, USA.

1.1 Spamdexing and Generated Content
By analogy with e-mail spam, the word spamdexing des-

ignates the techniques used to reach a web site to a higher-
than-deserved rank in search engines response lists. For in-
stance, one well known strategy to mislead search engines
ranking algorithms consists of generating a maze of fake web
pages called link farm.

Apart from the common dynamic web sites practice, the
ability to automatically generate a large amount of web
pages is also appealing to web spammers. Indeed [3] points
out that “the only way to effectively create a very large num-
ber of spam pages is to generate them automatically”.

When those pages are all hosted under a few domains,
the detection of those domains can be a sufficient counter-
measure for a search engine, but this is not an option when
the link farm spans hundreds or thousands of different hosts
— for instance using word stuffed new domain names, or
buying expired ones [6].

One would like to be able to detect all pages generated
using the same method once a spam page is detected in a
particular search engine response list. One direct applica-
tion of such a process would be to enhance the efficiency of
search engines blacklist databases by “spreading” detected
spam information to find affiliate domains (following the phi-
losophy of [7]).

1.2 Detecting Generated Pages
We see the problem of spam detection in a search engine

back office process as two-fold:

• detecting new instances of already encountered spam
(through editorial review or automatic methods);

• pinpointing dubious sets of pages in a large uncate-
gorised corpus.

The first side of the problem relates to supervised classi-
fication and textual similarity, while the second is more of
the unsupervised clustering kind.

1.2.1 Detecting Similarity With Known Spam
Text similarity detection usually involves word-based fea-

tures, such as in e-mail Bayesian filtering. This is not always
relevant in our case, because though those pages share the
same generation method, they rarely share the same vocab-
ulary [15] (apart from the web spam specifically involving
adult content) — hence using common text filtering meth-
ods with this kind of web spam would miss a lot of positive
instances. For example exiled presidents and energising sex
drugs are recurrent topics in e-mail spam, but link farm



automatically generated pages tend to rather use large dic-
tionary in order to span a lot of different possible requests
[6].

To detect similarity based on pages generation method,
one needs to use features more closely related to the in-
ternal structure of the html document. For instance, [13]
proposed to use html specific features along with text and
word statistics to build a classifier for genre of web docu-
ments.

1.2.2 Stylometry andhtml

In fact, what best describes the relationship between those
pages generated using the same template or method seems
to be more on a style ground than a topical one. This would
relate our problem with the stylometry area. Up to now, sty-
lometry was more generally associated with authorship iden-
tification, to deal with problems such as attributing plays to
the right Shakespeare, or to detect computer software pla-
giarism [5]. Usual metrics in stylometry are mainly based
on word counts [12], but also sometimes non-alphabetic fea-
tures such as punctuation. In the area of web spam detec-
tion, [15] and [11] propose to use lexicometric features to
classify the part of web spam that does not follow regular
language metrics.

1.2.3 Overview of This Paper
We first give some recalls about similarity, fingerprints

and clustering in section 2. We then detail the specificities
of the ”Hidden Style Similarity” algorithm in section 3. The
experimental results are described in section 4.

2. SIMILARITY AND CLUSTERING

2.1 Similarity Measure
The first step before comparing documents is to extract

their (interesting) content: this is what we call preprocessing.
The second step is to transform this content into a model
suitable for comparison (except for string edition based dis-
tances like Levenshtein and its derivatives where this inter-
mediate model is not mandatory). For frequencies based
distances the second step consists of splitting up the docu-
ments into multi-sets of parts (frequencies vectors). For set
intersection based distances, the split is done into sets of
parts. Depending on the granularity expected, these parts
may be sequences of letters (n-grams), words, sequences of
words, sentences or paragraphs. The parts may overlap or
not.

There are many flavors of similarity measure [14, 16]. The
most used measure in stylometry is the Jaccard similarity
index. For two sets of parts D1, D2:

Jaccard(D1, D2) =
|D1 ∩D2|
|D1 ∪D2| .

Variants may be used for the normalizing factor, such as in
the Dice index:

Dice(D1, D2) = 2 · |D1 ∩D2|
|D1|+ |D2| .

Whatever kind of normalisation used for |D1∩D2|, the most
important ingredients for the quality of comparison are the
preprocessing step and the parts granularity.

The one-to-one calculus of similarities is interesting for
fine comparison into a small set of documents, but the quad-

ratic explosion induced by such a brute-force approach is
unacceptable at the scale of a web search engine. To cir-
cumvent this explosion, more tricky methods are required.
These methods are described in the next three sections.

2.2 Fingerprints
The technique of documents fingerprinting and its appli-

cation for similarity clustering is a kind of locality sensitive
hashing [9]. We mainly based our work on the papers [8], [2]
and [1], where the pratical use of minsampling (instead of
random sampling) and its leverage effect on similarity esti-
mation is well described. We also noticed a phrase level use
of fingerprints to track search engine spam in [4].

2.2.1 Minsampling
Each document is split up into parts. Let us call P the

set of all possible parts. The main principle of minsampling
over P is to fix at random a linear ordering on P (call it
≺) and represent each document D ⊆ P by its m lowest
elements according to ≺ (we denote this set Min≺,m(D) ).

If ≺ is chosen at random over all permutations over P then
for two random documents D1, D2 ⊆ P and for m growing,
it is shown in [1] that

|Min≺,m(D1) ∩Min≺,m(D2) ∩Min≺,m(D1 ∪D2)|
|Min≺,m(D1 ∪D2)|

is a non biased estimator of Jaccard(D1, D2).

2.2.2 Fingerprints and Index Storage
With this fingerprinting method, the fingerprint of a doc-

ument D is stored as a sorted list of m integers (which are
hashing keys of the elements of Min≺,m(D)). The experi-
ments of [8] show that a value around m = 100 is reasonable
for the detection of similar documents in a large database.
The drawback of this method it that it does not provide
a real vector space structure to the fingerprints. A vec-
tor space structure is more convenient, for instance to build
indexes in a database to later fetch near duplicates of a par-
ticular document.

2.2.3 Optimization of Minsampling
An improvement of the model is to use m independent

linear orderings over P , let us call them ≺i for i ∈ [m], and
use these ordering to select one minimun element by order-
ing. The result is a real vector of m independant integers
and the similarity measure becomes:

Sima(D1, D2) =

∑m
i=0 |Min≺i(D1) ∩Min≺i(D2)|

m

which is a correct estimator of the Dice similarity.

2.3 Clustering
When working on large volume of documents, one would

like to group together the documents which are similar enough
according to the chosen similarity. This is especially useful
when no specific paragon to look for is known in advance.

If D is the set of documents, we want to compute a map-
ping Cluster : D → D associating to each element x its class
representative Cluster(x), with Cluster(x) = Cluster(y) if
and only if sim(x, y) is lower than a given threshold.

2.3.1 Clustering with Fingerprints



 0

 20

 40

 60

 80

 100

 120

 140

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

1
2

8
 k

ey
s 

fi
n

g
er

p
ri

n
ts

 H
S

−
si

m
il

ar
it

y

full document HS−similarity

Figure 1: The rate of matched dimensions accord-
ing to the full document hs-similarity (one-to-one
comparison between 10000 html files).

The first benefit of using fingerprints is to reduce the size
of documents representatives, allowing to perform all com-
putation in memory. As shown in figure 1, this reduction
by sampling is at the cost of a little loss of quality in the
similarity estimation.

Another important benefit of fingerprints is to give a low
dimension representation of documents. It becomes possible
to compare only the documents that match at least on some
dimensions. This is a way to build the sparse similarity ma-
trix with some control over the quadratic explosion induced
by the biggest clusters [2].

3. THE HSS ALGORITHM
To capture similarity based on pages generation method,

we propose to use a specific document preprocessing exclud-
ing all alpha-numeric characters, and keeping into account
the remaining characters through the use of n-grams. By
analysing usually neglected features of html texts like extra-
spaces, lines feed or tags, we are able to modelize the “style”
of html documents. This model enables us to compare and
group together documents sharing many hidden features.

We consider both the one-to-one full document hs-simila-
rity and the global hs-clustering of several documents. These
two aspects of the hss algorithm are described in figure 2.

As a side effect, the algorithm is efficient to characterize
html documents coming from the same web site without
information about the host or url, but the most interesting
results are similarity classes containing pages across many
differents domains yet with a high hs-similarity.

3.1 Preprocessing
The usual setup procedure to compare two documents is

to first remove everything that do not reflect their content.
In the case of html documents, this preprocessing step may
include removing of tags, of extra spaces and of stop words.
It may also include normalization of words by capitalization
or stemming.

The originality of our approach is to do exactly the op-
posite: we keep only the “noisy” parts of html documents
by removing any alphanumeric character. For example, ap-
plying such a preprocessing to a relatively human readable
html code like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xht...

HTML Document

content remover

HTML Noise

N−grams set

min−sampler

fingerprint

Jaccard index

exact

HS−similarity

estimated

dubious HSS−classes

doms counter

1

2

HS−similarity classes

HTML Document

content remover

HTML Noise

N−grams set

min−sampler

fingerprint
clustering

Figure 2: The hss algorithm: step (1) describes one-
to-one full document hs-similarity computation, step
(2) describes large scale similarity classes calculus
and link farm detection.

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"><head><title>Th...

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<meta http-equiv="Keywords" content="GNU, FSF, Free Software Foundation, Linux, Em...

<meta http-equiv="Description" content="Since 1983, developing the free UNIX style...

<link rev="made" href="mailto:webmasters@gnu.org">

<link rel="stylesheet" type="text/css" href="gnu_fichiers/gnu.css">

gives an html noise such as:
<! "-//// . //" "://..////-.">

< ="://..//" :="" =""><><> </>

< -="-" ="/; =-">

< -="" =", , , , , , , , , , , ">

< -="" =" , , .">

< ="" =":.">

< ="" ="/" ="/.">

Using non-alphanumeric characters – in the case of stan-
dard text, these are punctuation signs – as features to clas-
sify text is not completely unusual ([10], [13]), though most
use it only as a complementary hint. Since html syntax in-
cludes a lot of non-alphanumeric characters, they happen to
be very relevant in our case. Because it is straightforward,
this filtering of html text is also extremly fastly computed.

3.2 Similarity
For scalability reasons, we chose to use a set intersection

based distance with overlaping n-grams on the preprocessing
output as parts. A simple one-to-one style similarity mea-
sure can then be computed using formula from 2.1 But as
said earlier, using this one-to-one similarity measure doesn’t
fit for large scale clustering. Using fingerprints on the pre-
processing output is required to address the scalability issue.

3.3 Fingerprints
We chose to use minsampling with m independant order-

ings, with another (speedup) improvement which consists of
using a pre-hashing function to select in advance which di-
mensions of the final vector are concerned by a given part



of the document. Formally, if (C0, . . . , Cm−1) is the parti-
tion of P induced by the pre-hashing function, we have the
following similarity measure:

Simb(D1, D2) =

m∑
i=0

|Min≺i(D1 ∩ Ci) ∩Min≺i(D2 ∩ Ci)|
m

This pre-hashing avoids the heavy calculus of m linear or-
derings for each considered part, and also avoids to fill two
dimensions of the vector with the same part of a document.
The drawback is that small documents may not contain
enough parts to fill all dimensions of their fingerprint vector.

We chose to ignore these empty dimensions in the counting
of matched dimensions, thus lowering drastically the simi-
larity estimation for small documents. This side effect is not
critical, hs-similarity diagnostic being by essence unreliable
for small documents. Figure 1, shows a comparison between
exact Dice measure and Simb measure on fingerprints (with
m = 128).

3.3.1 Implementation
Each document is preprocessed on the fly. The parts we

used are overlapping n-grams hashed into 64 bits integers.
To compute the m independent orderings ≺i, we precom-
pute m permutations σi : [264] → [264] and compare the
permuted values:

x ≺i y ⇔ σi(x) < σi(y)

To compute these permutations, we use a subfamily of per-
mutations of the form σi = σ1

i ◦σ2
i where σ1

i is a bits shuffle
and σ2

i (x) is an exclusive or mask. After having initialized
every dimension of the fingerprint vector V ∈ INm to∞, we
evaluate each n-gram of the html noise with Procedure 1.

Procedure 1 Insert a string s by minsampling into a fin-
gerprint V ∈ INm.

Require: m > 0 and V initialized
h := preHash(s)
i := h mod m
h′ := σi(h)
if h′ < V [i] then
V [i] := h′

end if

3.4 Clustering
We used a variant from the algorithm described in [2]. It

does not build the entire similarity graph and uses a probing
heuristic to find potentially similar pairs.

3.4.1 Using Quasi-Transitivity on Similarity Matrix
By thresholding the similarity matrix (cf. 2.3.1), we ob-

tain a symetric relation (let us call it similarity graph):

S = {(x, y) ∈ D ×D | sim(x, y) < threshold}
Similarity graphs are characterized by their quasi-transitivity
property: if xSy and ySz then there is a high probabil-
ity that xSz. In other words, the connected components
of these graphs are almost equivalence classes. This quasi-
transitivity is helpful to accelerate the clustering process. If
the relation is transitive enough, any element may be used
as reference to decide if other elements are in the same class.
In practice, though building the full similarity graph is too

1

23

Figure 3: The quasi-transitivity of estimated hs-
similarity relation is well illustrated by this full sim-
ilarity graph (realized from 3000 html files). With
a transitive relation, each connected component
would be a clique. For “bunch of grapes” compo-
nents like (1) and (2), a clear cut may be done but
for “worms” components like (3) the similarity di-
agnostic is less clear.

expensive, the noise induced by sampling raises some inter-
est in using a bit of redundancy to improve the robustness
of the process (cf. figure 3).

To approximate the clustering map Cluster, we use an
algorithm controlled by two parameters: a probe threshold
p and a check threshold t. Depending of the aggressiveness
of hashing, it may be useful to group fingerprint keys. This
introduces a new parameter k to define the size of these
groups. We first generate p random subsets of size k in
[m]. By projecting and indexing fingerprint vectors p times
according to these k-subsets, we probe for potential simi-
lar pairs which are then checked according to t (See Proce-
dure 2).

Procedure 2 Search hs-similarity classes

Require: 0 < k, p, t ≤ m
init similarity graph;
for i := 0 to p do

pick a k-subset s ⊆ [m];
for all pairs (x, y) of fingerprints matching according
to s do

if Simb(x, y) > t then
add edge (x, y) to similarity graph;

end if
end for

end for
compute Clusters from connected components of the
graph;



3.4.2 Setting Up of Parameters
A good way to choose parameters p, t and k is to make

sure that the probability to miss a pair of similar documents
during the probing step is under a certain value. With k = 1,
for a check threshold t and a probe threshold p, the prob-
ability of missing a pair of similar documents is dominated
by:

Pmiss =

(
m−p
t

)
(
m
t

) =
(m− t− 1) . . . (m− t− p+ 1)

m. . . (m− p+ 1)

The actual error rate is lower due to the quasi-transitivity
of the similarity graph. With m = 128 and k = 1 the
relation p · t ≥ 512 ensures an edge missing probability lower
than 1%.

4. EXPERIMENTAL RESULTS
We used for experimentation a corpus of five million html

pages crawled from the web. This corpus was built by com-
bining tree crawl strategies:

• a deep internal crawl of 3 million documents from 1300
hosts of dmoz directory;

• a flat crawl of 1 million documents from a french search
engine blacklist (with many adult content);

• a deep breadth first crawl from 10 non adult spam urls
(chosen in the blacklist) and 10 trustable urls (mostly
from french universities).

At the end of the process, we estimated roughly that 2/5 of
the collected documents where spam.

After fingerprinting, the initial volume of 130 GB data to
analyse was reduced down to 390 Mo, so the next step could
easily be made in memory.

4.1 One-to-All Similarity
The comparison between one html page and all other

pages of our test base is a way to estimate the quality of
hs-similarity. If the reference page comes from a known web
site, we are able to judge the quality of hs-similarity as web
site detector. In the example considered here: franao.com

(a web directory with many links and many internal pages),
a threshold of 20/128 gives a franao web site detector which
is not based on urls. On our corpus, this detector is 100%
correct according to urls prefixes.

By sorting all html documents by decreasing hs-similarity
to one randomly chosen page of franao web site, we get a
decreasing curve with different gaps (Figure 4). These gaps
are interesting to consider in detail:

• The first 20, 000 html pages are long lists of external
links, all built from template 1 (Figure 5);

• Around 20, 000 there is a smooth gap (1) between long
list and short list pages, but up to 95, 000, the tem-
plate is the same;

• Around 95, 000, there is a strong gap (2) which marks
a new template (Figure 6): up to 180, 000, all pages
are internal franao links built according to template 2;

• Around 180, 000 there is a strong gap (3) between
franao pages and other web sites pages.

1

2

3

franao.com : template 2

other sites

franao.com : template 1  (large)

franao.com : template 1 (small)

 0

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120  140  160  180  200

1
2

8
 k

ey
s 

H
S

−
si

m
il

ar
it

y

row x 1000 (by decreasing HS−similarity)

HS−similarity to www.franao.com

Figure 4: By sorting all html documents by decreas-
ing hs-similarity with one reference page (here from
franao.com) we get a curve with different gaps. The
third gap (around 180, 000) marks the end of franao

web site.

Figure 5: franao.com template 1 (external links)

Figure 6: franao.com template 2 (internal links)



Table 1: Clusters with highest mean similarity and domain count
Urls Domains Mean Prototypical member (centröıd)

similarity
268 231 1 www.9eleven.com/index.html Copy/Paste

93148 313 0.58 www.les7laux.com/hiver/forum/phpBB2/membe. . . Template (Forums)

3495 255 0.33 www.orpha.net/static/index.html Template (Apache)

966 174 0.40 www.asliguruney.com/result.php?Keywords=m. . . Link farm
122 91 0.74 anus.fistingfisting.com/index.htm Copy/Paste

1148 173 0.38 www.basketmag.com/result.php?Keywords=gif. . . Link farm
19834 164 0.40 www.series-tele.fr/index.html?mo=serie t. . . Template

122 55 0.91 www.ie.gnu.org/philosophy/index.html Mirror
139 101 0.44 www.reha-care.net/home buying.htm?r=p Link farm
218 195 0.21 chat.porno-star.it/index.html Copy/Paste
177 60 0.67 www.ie.gnu.org/home.html Mirror

2288 44 0.90 www.cash4you.com/insuranceproviders/index. . . Link farm
626900 70 0.52 animalworld.petparty.com/automotivecenter. . . Link farm

168 96 0.32 www.google.ca/intl/en/index.html Mirror
214 61 0.50 shortcuts.00go.com/shorcuts.html Link farm

42314 112 0.26 forums.cosplay.com/index.html Template
121 63 0.41 collection.galerie-yemaya.com/index.html Copy/Paste
555 34 0.68 allmacintosh.digsys.bg/audiomac rating.h. . . Template
114 77 0.29 www.gfx-revolution.com/search/webarchiv.p. . . Link farm
286 60 0.35 gnu.typhon.net/home.sv.html Mirror

4.2 Global Clustering
To clusterize the whole corpus we need to raise the thresh-

old to ensure a low level of false positive. In our experiments
we chose n = 32, m = 128, k = 1, t = 35 and p = 20. With
a similarity score of at least 35/128, the number of misclas-
sified urls seems negligible but some clusters are split into
smaller ones.

We obtained 43, 000 clusters with at least 2 elements. The
table 1 shows the 20 clusters sorted by highest mean sim-
ilarity × domain count. (For the sake of readability some
mirror clusters have been removed from the list.)

In order to evaluate the quality of the clustering, the first
50 clusters, as well as 50 other randomly chosen ones, were
manually checked, showing no misclassified urls.

Most of the resulting clusters belong to one of these classes:

1. Template clusters groups html pages from dynamic
web sites using the same skeleton. The cluster #2
of figure 1 is a perfect example, it groups all forum
pages generated using the PhpBB open source project.
The cluster #3 is also interesting: it is populated by
Apache default directory listings;

2. Link farm clusters are also a special case of Tem-
plate. They contain numerous computer generated
pages, based on the same template and containing a
lot of hyperlinks between each other;

3. Mirrors clusters contain sets of near duplicate pages
hosted under different servers. Generally only minor
changes were applied to copies like adding a link back
to the server hosting the mirror;

4. Copy/Paste clusters contain pages that are not part of
mirrors, but do share the same content: either a text
(e.g. license, porn site legal warning. . . ), a frameset
scheme, or the same javascript code (often with few
actual content).

Table 2: A sample template cluster
Url

1 www.les7laux.com/hiver/forum/phpBB2/me. . .
0.68 ksosclan.free.fr/phpBB2/login.php
0.67 www.quartertothree.com/phpBB2/profile.ph. . .
0.65 www.lirone.com/forum/login.php?redirect=. . .
0.64 www.francemule.com/forum/login.php?redir. . .
0.63 ksosclan.free.fr/phpBB2/login.php?redire. . .
0.62 90plan.ovh.net/ lillofor/login.php?redir. . .
0.60 www.artisanatweb.com/phpBB/viewtopic.php. . .
0.57 www.artisanatweb.com/phpBB/viewforum.ph. . .
0.54 www.dualforum.com/profile.php?mode=viewp. . .
0.53 www.dualforum.com/viewforum.php?f=52
0.56 bande2floydiens.free.fr/forum/posting.ph. . .
0.33 forum.p2pfr.com/posting.php?mode=quote&a. . .
0.28 a.chavasse.free.fr/phpBB2/viewtopic.php?. . .
0.25 www.e-hotellerie.com/forum/index.html?c=. . .

The first two cluster classes are the most interesting ben-
efit of the use of hss clustering. They allow an easy classi-
fication of web pages by categorizing a few of them.

Table 2 shows sample urls of a cluster with the associ-
ated similarity against the center of the cluster. This cluster
gathers urls from forum build with phpBB. Some of these
could have been classified with simple methods like a search
for the typical string “phpBB2” in the url, but this would
overlook some web sites that integrate phpBB with some
changes in the display style. Using hss algorithm allows to
gather those forums in the same cluster.

Classical algorithms for similarity could be used to extract
the last two cluster classes. Using hss algorithm enables to
quickly build a first clustering of the pages, and next use
more expensive methods to refine this clustering, reducing
the total computing time.



5. CONCLUSION
We presented in this paper a method to compute a dis-

tance based on html extra-textual features (Hidden Style
Similarity). A computationally efficient method to cluster
documents based on this similarity has been detailed, and
some results on a test corpus have been commented.

This method finds several uses in a search engine back-
office process: it makes it possible to cluster pages based on
the template and writing style. It enables to find particu-
lar instances of well-known pages genre such as forum pages
or Apache directory listings, so as to tag or skip them in a
search engine response list. Given a set of already known un-
desirable pages, other pages sharing the same template can
be sought after and tagged for deletion or editorial review.

Apart from the editorial detection of web spam, a com-
plementary useful process is to point out large clusters of
similar pages spanning several domains: this is often a good
hint of either sites mirroring or automatic spam pages gen-
eration, both things being valuable information to be pro-
cessed by a search engine back office.

6. REFERENCES
[1] A. Z. Broder. On the resemblance and containment of

documents. In Proceedings of Compression and
Complexity of Sequences, page 21, 1998.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. In Selected
papers from the sixth international conference on
World Wide Web, pages 1157–1166, Essex, UK, 1997.
Elsevier Science Publishers Ltd.

[3] D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics: using statistical analysis to
locate spam web pages. In WebDB ’04: Proceedings of
the 7th International Workshop on the Web and
Databases, pages 1–6, New York, NY, USA, 2004.
ACM Press.

[4] D. Fetterly, M. Manasse, and M. Najork. Detecting
phrase-level duplication on the world wide web. In
SIGIR ’05: Proceedings of the 28th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 170–177,
New York, NY, USA, 2005. ACM Press.

[5] A. Gray, P. Sallis, and S. MacDonell. Software
forensics: Extending authorship analysis techniques to
computer programs. In 3rd Biannual Conference of
International Association of Forensic Linguists (IAFL
’97), pages 1–8, 1997.

[6] Z. Gyöngyi and H. Garcia-Molina. Web spam
taxonomy. In First International Workshop on
Adversarial Information Retrieval on the Web
(AIRWeb), 2005.

[7] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen.
Combating web spam with trustrank. In VLDB, pages
576–587, 2004.

[8] N. Heintze. Scalable document fingerprinting. In 1996
USENIX Workshop on Electronic Commerce,
November 1996.

[9] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In Proc. of 30th STOC, pages 604–613,
1998.

[10] B. Kessler, G. Nunberg, and H. Schütze. Automatic

detection of text genre. In Proceedings of the 35th
Annual Meeting of the ACL and 8th Conference of the
EACL, pages 32–38, 1997.

[11] T. Lavergne. Unnatural language detection. In
Proceedings of RJCRI’06 : Young Scientists’
conference on Information Retrieval, 2006.

[12] T. McEnery and M. Oakes. Authorship identification
and computational stylometry. In Handbook of Natural
Language Processing. Marcel Dekker Inc., 2000.

[13] S. Meyer Zu Eissen and B. Stein. Genre classification
of web pages. In S. Biundo, T. Frühwirth, and
G. Palm, editors, Proceedings of KI-04, 27th German
Conference on Artificial Intelligence, Ulm, DE, 2004.
Published in LNCS 3238.

[14] C. J. Van Rijsbergen. Information Retrieval, 2nd
edition. Dept. of Computer Science, University of
Glasgow, 1979.

[15] A. Westbrook and R. Greene. Using semantic analysis
to classify search engine spam. Technical report,
Stanford University, 2002.

[16] J. Zobel and A. Moffat. Exploring the similarity
space. SIGIR Forum, 32(1):18–34, 1998.


