Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	00000000	00000000	0

Computing Trusted Authority Scores in Peer-to-Peer Web Search Networks

<u>Josiane Xavier Parreira</u> * , Debora Donato [¢] , Carlos Castillo [¢] , Gerhard Weikum ^{*}

* Max-Planck Institute for Informatics
\$ Yahoo! Research

May 8, 2007

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
•	o	00000000	00000000	0
Introduct	ion			

Motivation

- P2P systems for storing and sharing information.
- Decentralized nature opens doors to malicious behaviors from peers.

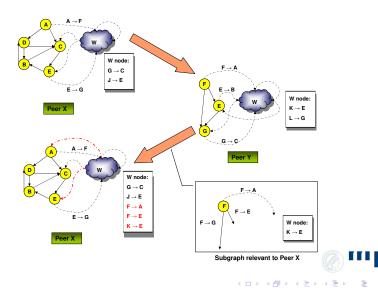
Previous Work

- JXP algorithm for computing decentralized PageRank-style authority scores in a P2P network [VLDB'06].
- Assumes peers are always honest.

Contribution

Decentralized reputation system to be integrated into JXP.

(日)、


Allows computation of "trusted" authority scores.

Introduction	JXP	TrustJXP
	•	

Experimental Results

Conclusion and Future Work $_{\rm O}$

JXP Algorithm [VLDB'06]

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
		0000000		

TrustJXP Algorithm

Idea

- Detect when peers report false scores at the meeting phase.
- Analyze peer's deviation from common features that constitute usual peer profile.

Forms of attack addressed

- Peers report higher scores for a subset of their local pages.
- Peers permute the scores of its local pages.

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
		0000000	0000000	

Malicious Increase of Scores

Why peers cheat

High authority scores for local pages can bring benefits to a peer.

Our approach

- Analyse the distribution of the scores reported by a peer.
- Use histograms to store and compare score distributions.
- Motivation: Web graph is self-similar → local scores distribution should resemble global distribution after a few iterations.

・ロト ・ 戸 ・ ・ ヨ ・ ・

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	00●00000	00000000	O

Histograms

Histograms

- Each peer stores a histogram H.
- Scores from other peers are inserted after each meeting.
- A novelty factor accounts for the dynamics of the scores.

$$H^{(t+1)} = (1-\rho)H^t + \rho D$$

 ${\it D}$ is the score distribution of the other peer, and ρ is the novelty factor.

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	000●0000	00000000	0

Histograms

Comparing Histograms

Hellinger Distance

$$HD_{i,j} = \frac{1}{\sqrt{2}} \left[\sum_{k} (\sqrt{H_i(k)} - \sqrt{D_j(k)})^2 \right]^{\frac{1}{2}}$$

k = total number of buckets $H_i(k)$ and $D_j(k) =$ number of elements at bucket k at the two distributions

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
		00000000	0000000	

Malicious Permutation of Scores

Problem

- Peers can cheat and yet keep the original score distribution.
- Histogram comparison not effective in this case.

Our approach

- Compare the rankings from both peers for the overlapping graph.
- Observation: Relative order of scores very close to the actual ordering, after few meetings.

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	00000●00		0

Comparing Rankings

Tolerant Kendall's Tau Distance

$$egin{aligned} \mathcal{K}_{i,j}' = & |(a,b): a < b \land score_i(a) - score_i(b) \geq \Delta \ & \wedge au_i(a) < au_i(b) \land au_j(a) > au_j(b)| \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト

э

 $score_i(a)$, $score_i(b) = scores$ of pages a and b at peer i τ_i , $\tau_j = rankings$ of pages at peers i and j $\Delta = tolerance threshold$

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	000000●0	00000000	o

TrustJXP Algorithm

Computing Trust Scores

- Idea: Combine previous measures to assign trust scores to peers.
- Each peer assigns its own trust score to another peer, at each meeting step.
- How to combine the measures? We take a "safer" approach.

$$\theta_{i,j} = min(1 - HD_{i,j}, 1 - K'_{i,j})$$

(日) (同) (日) (日)

• Trust score is integrated to the JXP computing, at the merging lists phase.

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
		0000000	0000000	

Integrating Trust Scores and JXP Scores

Integrating Trust Scores and JXP Scores

• When merging lists, scores from both lists can be combined by either averaging or taking the max score.

(日) (同) (日) (日)

• If page is not present on a list \rightarrow score = 0.

Averaging the scores

JXP:
$$L'(i) = (L_A(i) + L_B(i))/2$$

TrustJXP: $L'(i) = (1 - \theta/2) * L_A(i) + \theta/2 * L_B(i)$

Taking max score

JXP:
$$L'(i) = max(L_A(i), L_B(i))$$

TrustJXP: $L'(i) = max(L_A(i), \theta * L_B(i))$

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	00000000	●0000000	0
Experime	ental Reg	sults		

Web collection

- Obtained using a focused crawler.
- 134,405 pages, 1,915,401 links.
- 10 categories.

Setup

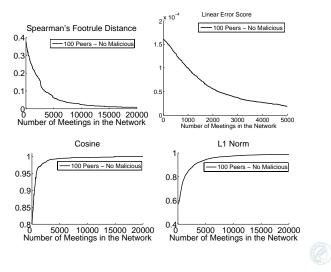
- 100 honest peers, 10 peers/category.
- Malicious peers
 - Perform JXP meetings and local PR computation like a normal peer.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• Lie when asked by another peer about the local scores, according to attacks previously described.

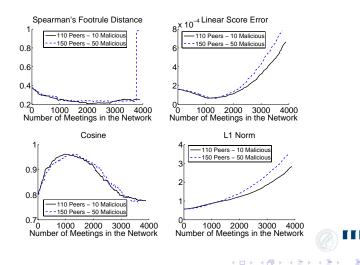
Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	00000000	0000000	0

Experimental Results

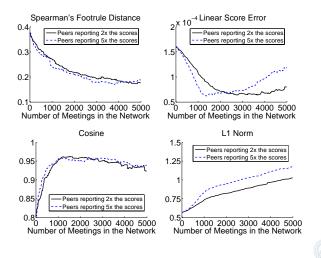

Evaluation Measures

- "Global" JXP ranking vs. Global PageRank ranking.
- Spearman's Footrule Distance at top-k.
- Linear error score at top-k.
- Cosine at full ranking.
- L1 norm of full JXP ranking (L1 norm of Global PR always 1).

(日) (同) (日) (日)


JXP Performance - No Malicious Peers

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
			0000000	


Impact of Malicious Peers

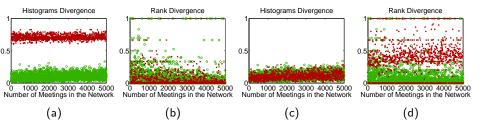
(Peers report 2x the true score value for all local pages)

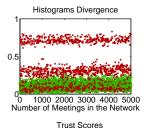
Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	00000000	0000000	O

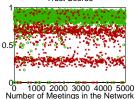
Averaging the Scores

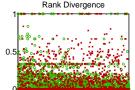
(日)、

Introduction 0	JXP o	TrustJXP 00000000	Experimental Results 00000●00	Conclusion and Future Work 0
Truct M				




Figure: Increased-scores attack: (a) and (b). Permuted-scores attack: (c) and (d). A green circle (\circ) represents a meeting between two honest peers, and a red cross (\times) a meeting between an honest and a dishonest peers.




Experimental Results

Conclusion and Future Work $_{\rm O}$

Trust Scores (Random Attacks)

0 1000 2000 3000 4000 5000 Number of Meetings in the Network

Max.	Detection	False
θ	rate	positives
0.9	37.4%	4.7%
0.8	86.9%	12.1%
0.6	98.0%	54.5%

(日)

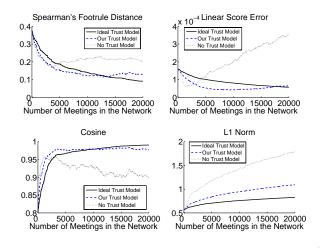


Image: A math a math

* 150 Peers - 50 Malicious; Mixed malicious behavior

Introduction	JXP	TrustJXP	Experimental Results	Conclusion and Future Work
0	o	00000000	00000000	•

Conclusion

- TrustJXP algorithm for identifying and reducing the impact of cheating peers.
- Uses scores distribution and ranking analysis to detect malicious behavior.
- Experiments demonstrate viability of the method.

Future Work

- Detect other types of malicious behaviors.
- Network dynamics.

